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Abstract

This research investigates both experimental study and numerical simulation for the mobilization of residual oil under
vibratory conditions. A capillary model is established to present pore structure and various vibratory stimulations are applied
to the model. Through experimental studies, a relationship is built between the driving pressure and the system parameters
such as drainage time, oil slug length, vibration frequency and duration. The numerical study shows the existence and
development of a water film surrounding the oil slug during the oil slug mobilization. Results indicate that optimal vibration
frequency and duration time can greatly increase the oil slug mobilization efficiency.
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Introduction

The petroleum industry has implemented enhanced oil recovery (EOR) techniques and recognizes that oil
production is generally improved by applying vibro-seismic techniques. The exact mechanism behind it is far from
understood. While it has been demonstrated by numerous experimental and field test results that vibro-seismic
stimulation can improve waterflooding efficiency during the residual oil recovery process in depleted reservoir [1],
practical implementations of such techniques are at best trial and error. Often, vibration frequency on the order of
mega Hertz in dynamic range is swept to mobilize residual oil. Such a wide range of vibration frequency, to some
extent, reflects the lack of efficient and effective guidance in utilizing such techniques. Thus, it is theoretically and
practically significant to carry out systematic research on the flow behavior of residual oil during the mobilization
process under vibratory stimulation.

Ashchepkov [2] conducted a series of experiments on sandstone cores with different permeability. Vibratory
stimulations at frequencies of 30, 60, 100, 200, and 400 Hz and with amplitudes of 0.6 and 0.4 um were applied to
these cores. Significantly faster imbibition of water and oil drainage was observed after the vibratory treatment.
Pogosyan [3] studied the influence of vibratory stimulation on single-phase permeability on a synthetic core made
from quartz sand and marshallite. It was observed that the permeability and drainage of the core were increased
by vibration; however, the nature of the vibration stimulation was not specified.

Simkin and Surguchev [4] conducted a spectrum of experiments including gravity segregation, oil-displacement,
and imbibition on a sandpack. The gravity segregation experiments showed that when the sandpack was vertically
inverted without vibration, it took approximately 12 days to achieve the new gravity equilibrium; however, the
new gravity equilibrium was achieved in only about 2 hours under a vibratory stimulation of 120 Hz and
amplitude of 0.01cm. It was observed in the oil-displacement tests that, with vibratory stimulation, an oil recovery
of 75% was achieved while without vibration, the observed oil recovery was approximately 45%. In the imbibition
tests conducted on a sandstone core after 352 hours of imbibition, o0il recovery of 56% was achieved without
vibration whereas under vibratory stimulation, the oil recovery reached 96%.

Beresnev’s research group from Iowa States University has been working in this area for over 10 years and has
made a great contribution in the effects of vibration on oil mobilization[1, 5-9]. Through theoretical research, they
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found that vibratory stimulation could remarkably decrease the value of the pressure gradient required to mobilize
the entrapped oil slug. They also considered a 2-D etched glass micromodel with a 50 X50 square lattice of circular
“pores” connected by straight channel “throats”. The experimental results demonstrated that for fixed acceleration
amplitude, TCE was displaced faster by water injection as the frequency decreased from 60 to 10Hz. For the fixed
vibration frequency, the TCE mobilization was enhanced as the acceleration amplitude increased from 0.5 to
5.0m/s2. Their latest results reported in 2011 described a sinusoidally constricted capillary model to simulate pore-
throat in porous media and studied the impact of vibration excitation on oil slug mobilization; their results shew
that vibration had positive effects on the process of oil slug overcome pore-throat. Also, the lower frequency of
vibration works better compared with higher frequency ones.

Roberts [10] conducted experiments by applying compression vibration to a sandstone core in the axial direction. It
was observed that oil flow was enhanced at frequencies between 25 to 100 Hz, whereas no significant changes in
permeability were observed. Experiments were conducted by Wang [11] and Spanos [12] on vertical columns of
sandpack with oil flowing through it. Unlike other experiments, pressure pulses at a frequency of about 1 Hz were
applied to the sandpack. The experimental results showed a significant increase in the flow rate. Ma [13]
investigated the effect of vibration on core permeability (32 cores with diameter: 2.5 cm, length: 3 to 7.5 cm under
translational vibration of 0.05 to 0.2 g force at frequencies of 0 - 30 Hz). It was observed that the permeability
increased by 28% when the frequency was the eigen-frequency of the core, whereas permeability actually
decreased at other frequencies. However, they failed to define the core’s eigen-frequency in their paper.

The research group at the University of Regina has been working on the effect of vibration excitation on oil slug
mobilization in capillary model. Dong [14] studied the pressure drop of oil slugs, mobilized by very low and
constant injection rates in a water-filled capillary tube. As found in their research, to mobilize the oil slug in
straight capillary tube, the driving pressure must be large enough to overcome the resistance of the capillary wall
as well as the viscous pressure. Dai and Zhang [15] illustrated four different flow phenomena during the process of
oil slug mobilization in a capillary; their results indicate that the development of water film is crucial in oil slug
mobilization, and the flow phenomena are dominated by the oil slug length as well as the water injection rate.
Later on, Dai and Wang [16] conducted a numerical research on the oil slug mobilization in an axisymmetric
capillary tube. The results confirmed the existence of water film between the oil slug and the tube wall. Fan [17]
studied the effect of vibratory stimulations on a flowing slug. For an oil slug flowing in a capillary tube under a
constant driving pressure, the results showed the existence of an optimum vibration frequency, under which the oil
slug achieved its maximum speed. Cheng [18, 19] also conducted experiments to investigate the impact of
vibratory stimulation on the mobilization of oil slugs in a capillary tube. It was found that within a certain
frequency range, the driving pressure that was required to mobilize the oil slug decreased with the increase of the
vibration frequency.

In this research, a customized test bed is presented to study oil slug mobilization in porous media along with the
experimental results that provide insights on the impact of water drainage time, vibration frequency, and vibration
duration on a required oil slug mobilization pressure. The results obtained in the present research contribute to the
efforts of revealing mechanisms of the vibratory stimulation technique in EOR.

Experimental Test Bed and Approach

Experiment Test Bed

The layout of the experimental test bed is depicted in Figure 1. The experimental setup consists of the pore
structure model, the vibration generation system and the data acquisition system.

For the sake of clarity and simplicity, a capillary model is used to present a branch of pore structure underground.
The core component of pore structure model is a uniform circular glass capillary tube, which is 1000 mm long with
an inner diameter of 1.5 mm (PYREX Brand Glass Tubing). Two Plexiglas chambers (Chamber A and Chamber B)
are attached to fix the tube. A pulse-free constant syringe pump (Model 341A, Sage Instrument) is connected to
Chamber B to provide a constant flow rate in the capillary tube. On the other side, a water reservoir is connected to
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Chamber A to collect the outflow liquid.

The data acquisition system is used to collect and record the pressure differences across the capillary tube
throughout the oil slug mobilization process. The core device of the data acquisition sub-system is a highly
sensitive pressure transducer (DP103, Validyne Engineering) with a resolution as low as 0.014 mmH2O. The
signals from the transducer are collected and converted into digital signals by a data acquisition board (CIO-
MINI37, National Instruments) connected directly to the carrier demodulator. The digital signals generated by the
data acquisition board are then transformed into computer data and are processed by a data processing software
(DASYLab V8.0, National Instruments) installed on the computer. The collected data are stored as raw
experimental data which can be plotted to visualize the pressure profile.
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FIGURE 1: EXPERIMENTAL TEST BED.

The vibration generation system consists of a vibration exciter (Bruel & Kjaer, Type 4808), a power amplifier (Bruel
& Kjaer, Type 2706) and a signal generator (Bruel & Kjaer, Type 3560C). An accelerometer (DeltaTron, Type 4398)
is used to monitor the vibration amplitude of the capillary tube. The vibration generation system is controlled by a
software (Bruel & Kjaer, Pulse 8.0), which is also used for data acquisition. The vibration system is capable of
generating vibration signals with frequencies ranging from 5 Hz to 10 KHz. Waveforms of the vibration signals can
be sinusoidal, impulsive and so forth. Sinusoidal signals are used in this research to study the effect of vibratory
stimulation on oil slug mobilization.

Experimental Material Properties and Conditions

The oil sample used in this research is standard S60 in conformity with the ASTM Oil Standard. In order to
minimize the adverse effect on the experiment results caused by impurities, DI water is employed in oil slug
mobilization. Experiments are conducted at room temperature (22 + 0.5°C). The oil-water interfacial tension (IFT),
yow, of the oil sample is measured to be 27 dyne/cm using the pendant drop method. Thus, the capillary pressure
is calculated to be 2yow/Rt = 7.2 mmH20O with a contact angle of 0°. At room temperature, the viscosity of the S60
oil sample is 148.0 cp and the water viscosity is 1.0 cp. Densities of the oil and water are 0.87 and 1.00 g/cm3,
respectively.

Experimental Procedures

The purpose of the current research is to study the effects of both the vibration frequency and duration on the
mobilization of an oil slug in the capillary tube, respectively. The following experimental procedures are carefully
considered to reach the above goal.
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1) A capillary tube is firstly cleaned by Varsol, acetone, DI water orderly; and then blows dry with air for an
hour to ensure the inner surface is completely clean and dry.

2) The clean tube is fixed by Chamber A and B, the whole system is then filled with DI water, it is necessary to
make sure there is no air bubble into the flow system.

3) An oil slug with desired length is injected to the capillary tube through Chamber B. It should be noted that
after the oil slug is injected into the capillary tube, the needle connected to the syringe must be pulled out of
the tube very slowly and steadily so that the oil slug would not break due the motion of the needle. Such a
slow motion of the needle also prevents the inner surface of the capillary tube from being scratched by the
sharp point of the needle.

4) The flow system is then standing there without any external pressure and waiting for the drainage time.
The drainage time is defined as the duration of time for which the oil slug stays still inside the capillary
tube. During the drainage time, the water film exists between the oil slug and tube wall drain out due to the
interfacial tension between oil and water, such that the oil slug contacts with the tube wall directly. Water
film drainage is an important process and it will be discussed in section 4.1 in detail.

5) When the oil slug is set ready, after desired hours of drainage, the capillary tube is subjected to the
stimulation of external vibration. A vibratory stimulation ranging from 5 to 350 Hz is applied to the
capillary tube containing the oil slug, and the acceleration amplitude is 8 m/s2.

6) After a desired time of vibration, the exciter is shut down and water is injected immediately by the syringe
pump. At the meantime, the pressure difference across the tube is measured and recorded during the water
injection.

7) When the oil slug is observed to flow in a stable condition and the pressure drop trend becomes smooth,
then the water injection is stopped. This is considered as an entire cycle of experiment.

Results and Discussion

Influence of Water Film Drainage on Oil Slug Mobilization
1) Experimental Research of Influence of Water Film Drainage on the Oil Slug Mobilization

Firstly, we investigate the impact of water film drainage on the pressure needed for oil slug mobilization. For a
moving oil slug, research has shown that when the capillary tube radius is small enough such that gravity is
negligible, there will be a film of liquid with uniform thickness between the oil slug and the capillary wall [20].
When an oil slug is initially injected into a capillary tube full of water, it is considered as a moving oil slug. At
this stage, a water film will be generated once an oil slug is injected to the capillary tube. When the oil slug
stops moving and remains still inside the capillary tube, the water film will be partially or fully drained out
under surface tension of the oil slug eventually.

There are many factors that affect the water film drainage for oil slugs such as temperature, oil slug length and
material properties of the oil. In this research, extensive work is focused on investigating the relationship
between the driving pressures required for the mobilization of oil slugs of different lengths and with different
durations of drainage time.

A set of mobilization experiments were conducted on an oil slug inside the capillary tube with a range of
drainage times between 2 to 38 hours, depending on the oil slug length; generally speaking, the shorter oil slug
is, the shorter time it needs to drain out the water film between the oil slug and the tube wall. In the previous
research, Dai [16] shows that the value of the maximum driving pressure is mainly dependent on the oil slug
length and the water injection rate does not have significant influence on the value of the maximum driving
pressure. Thus, the water injection rate is fixed at 0.35 ml/hr in this research. For each drainage time, the
maximum driving pressure (pressure needed for slug mobilization) was collected. This set of experiments was
then performed for several slug lengths: 4 mm, 8 mm, 20 mm, 30mm and 65 mm. It should be mentioned that
longer drainage time (up to 50 hours) has been applied to 65 mm oil slug in order to make sure the water film is
maximally drained out.
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Figure 2 shows the trend of a typical pressure profile summarized from the oil slug mobilization experiment.
The driving pressure applied to the slug was proportionally increasing over experiment time until the slug
began to mobilize. This pressure was recorded as the maximum driving pressure needed for slug mobilization.
Subsequently, less pressure was needed since the slug was already mobile.

Typical Driving Pressure Profile
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FIGURE 2: A TYPICAL DRIVING PRESSURE PROFILE

Similar pressure profiles were obtained for other drainage times for specific slug lengths. The relationship
between the maximum driving pressure and drainage time is plotted in Figure 3. As expected, the shorter the
drainage time is, the lower the maximum driving pressure is required for oil slug mobilization. This confirms
our earlier results on the driving pressure required to mobilize the oil slug [19]. The decrease in maximum
driving pressure with decreasing drainage time can be interpreted in the following way: when the drainage
time is shorter, there is still a considerable amount of water film between the oil slug and capillary wall, which
makes mobilization easier, therefore requiring less driving pressure. On the other hand, when the drainage time
is longer, there is less amount of water film existing between the oil slug and capillary wall, which makes the
mobilization of the oil slug more difficult, therefore requiring more driving pressure.

Although the maximum driving pressure increases with drainage time, the increasing rate decreases
significantly beyond a certain point. Take the maximum pressure curve of 4 mm oil slug as example; the
maximum driving pressure is almost constant between 13 to 38 hours of drainage time. Intuitively, when the
drainage time is long enough depending on the oil slug length (for example, 13 hours for a 4 mm oil slug), the
water film will be drained to the utmost extent such that there would be no significant difference from the
maximum driving pressure needed for longer drainage times.

Meanwhile, Figure 3 compares the maximum driving pressure recorded for oil slugs with different lengths. As
expected, the maximum driving pressure needed to mobilize the oil slug decreases as the oil slug length
increases. While all curves exhibit very similar trends. All of the maximum driving pressures increase with
increasing drainage time. However, the slope of the increasing driving pressure reduces notably as the oil slug
length increases. Also, as one may notice from the figure, the rate of increase in maximum driving pressure for
longer oil slugs is much less than that for shorter ones. This implies that the water film or the amount of
residual water between the oil slug and the solid wall plays an important role in mobilizing the oil slug in
capillary. One may also conclude that the maximum driving pressure required to mobilize an oil slug is less
sensitive to drainage time for longer oil slugs. Our results on the relationship between slug length and
maximum driving pressure provide further insights on the level of difficulty in slug mobilization for porous
media with different amount of surface contact with slugs.
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FIGURE 3: MAXIMUM DRIVING PRESSURE VS. DRAINAGE TIME FOR OIL SLUGS OF DIFFERENT LENGTHS
2) Numerical Research of Influence of Water Film Drainage on the Oil Slug Mobilization

Numerical simulation results have been provided for better understanding of the effect of drainage time on the
oil slug mobilization. A powerful computational fluid dynamics software package ANSYS-FLUENT has been
employed to simulate the experimental observation about the drainage of the water film. The most important
task in a numerical simulation is the establishment of a proper model. A horizontal capillary tube 80 mm long
with an inner diameter of 1.5 mm is established based on the geometric dimensions of the capillary tube used in
actual experiments; inside the capillary tube, two immiscible fluids with different physical properties are
considered: a 2 mm long oil slug and in a tube filled with water. The properties of the oil slug and water are the
same as given in section 2.

An inner-surface tracking method namely volume of fluid (VOF) algorithm is applied here to simulate the oil-
water flow in capillary tube [21]. In the VOF model, the surface position is determined by fraction function (Eq.
2, 3, 4). Then the Navier-Stokes equation (Eq. 1) is applied based on the results of this fraction function.

op
—+V-(pu)=0 1
m (pu) @
0 2
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— ap +(1—0l),02/,l2 (4)
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wherep , g1and Q2 are the average density, density of phase 1 and density of phase 2, respectively.u, puand p2
are the average viscosity, viscosity of phase 1 and viscosity of phase 2, respectively, p is the pressure, u is the
velocity, f is the body force per unit volume and « is the volume fraction of phase.

Figure 4-(a) illustrates the oil slug in the initial state and Figure 4-(b) to (d) give the visualized contours of the
diminishing water film. As shown in the figure, the thickness of the water film decreases, as the oil slug remains
stationary inside the capillary tube. Given enough time, the water film will eventually be drained out from the
space between the oil slug and the tube wall, then the oil slug will contact with the tube wall directly, which
makes it difficult to be mobilized because, in addition to the capillary force, there is also resistance between the
tube wall and the oil slug due to the viscous force.

The phenomenon appears in the numerical simulation can explain the experimental result, that the longer
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drainage time is, the higher pressure it needs to mobilize the oil slug, because of the increasing of the resistance
force.

‘Water Film

(a)T=0s
Water Film
(b) T=0.0215s
Water Film
(©)T=22.1s
Water Film
Water Film
(d)T=418s

Water Film
FIGURE 4: DRAINAGE OF WATER FILM

Influence of Vibration Excitation on Oil Slug Mobilization

The main focus of this research is to study the effects of vibration on oil slug mobilization in a capillary model. The
influence of both vibration frequency and vibration duration time is analyzed in detail.



L. DAI, G. CHENG, M. DONG, Y. ZHANG

1) Influence of Vibration Frequency on Oil Slug Mobilization

Firstly we fix the oil slug length (25 mm) and drainage time (24 hours) in this experiment to explore the impact
of vibration frequency on the maximum driving pressure.

After treating the pore structure model under vibration stimulations at different frequencies ranging from 5 to
350 Hz and for the same period of time (30 minutes), the mobilization of the oil slug in straight tube was
initiated by injecting water into the capillary tube at injection rate equals to 0.34 ml/hr. The pressure difference
between the two sides of the capillary tube was measured with respect to time. For an oil slug with a length of
25 mm and a drainage time of 24 hours, pressure profiles corresponding to different vibration frequencies are
plotted in Figure 5.
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FIGURE 5: COMPARISON OF PRESSURE PROFILES FOR DIFFERENT VIBRATION FREQUENCIES ON A 25 MM OIL SLUG

As can be seen from Figure 5, the driving pressure required for mobilizing the oil slug decreases as the
frequency of the vibratory stimulation increases. When the frequency reaches 270 Hz, the pressure profile
obtained at this frequency almost overlaps with the lower bound pressure curve, i.e.,, the pressure profile
obtained under the condition of zero drainage time and without vibration. For pressure profiles obtained from
vibratory stimulation at frequencies higher than 270 Hz, they are so close that they almost overlap. The effect of
mobilizing a 25 mm long oil slug in a capillary tube for 24 hours after vibratory stimulations for the duration of
30 minutes, when the frequency reaches 270 Hz or higher, can be deemed as equivalent to the effect of
mobilization with zero drainage time. Figure 6 shows the maximum value of driving pressure at different
vibration frequencies.
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The experimental results presented in Figure 5 and Figure 6 can be summarized as follows:

1. The vibration excitation evidently shows positive influence on the mobilization of oil slugs in the capillary
tube. The pressure shows two stages with increasing vibration frequency as shown in Figure 6, when all the
other conditions are fixed. The effects of the vibration frequency on the maximum pressure can be seen as
the following.

e  When the vibration frequency is equal or less than 150 Hz, the maximum driving pressure for
mobilizing the oil slug is dropped by about 14% from that without vibration excitation;

e When the vibration frequency is in the range of 190 Hz to 310 Hz, the maximum driving pressure is
reduced 32% from the case without vibration excitation, or 18% of further reduction from the case
above.

2. There exists an optimum vibratory frequency at which the best effect of the vibration applied on improving
mobilization can be achieved. It means the effect of the optimum frequency can be made very close to the
effect achieved when the drainage time is zero.

In addition to vibration frequency, the duration of vibration also shows impact over the driving pressure
needed for slug mobilization. In this experiment, the vibration amplitude is 0.002 m and the frequency is fixed
at 10 Hz. The vibration durations are ranging from 10 to 120 minutes. After treating the pore structure model
under vibration stimulations with varying periods of time, the mobilization of the oil slug in straight capillary
tube is initiated by injecting water into the capillary tube at injection rate equals to 0.34 ml/hr. Figure 7 shows a
comparison of the pressure profiles obtained on a 43 mm long oil slug with drainage time of 24 hours under
vibration stimulations of different durations.

As shown in Figure 7 the driving pressure required to mobilize the oil slug decreases as the duration of the
vibratory stimulation increases. The pressure profile almost overlaps with the lower bound (the pressure profile
obtained under the condition of zero drainage time and without vibration) for the 43 mm long oil slug when
vibration lasted 120 minutes. As per the experimental results obtained, the vibration of sufficiently long
duration is preferred for mobilizing the oil slug with minimum driving pressure. Figure 7 shows the maximum
value of driving pressure at different vibration duration time.

The results illustrated in Figures 7 and 8, demonstrate that vibration duration plays an important role in the
mobilization of oil slugs in a capillary tube. It can be concluded that the best effect of vibration stimulation on
mobilization can be achieved if the vibration duration used is sufficiently long. It should be noticed, however,
the longer is the vibration duration, the more efforts are needed for generating and maintaining the vibration.
For practically and economically sound results, the sufficiency of the vibration duration time needs to be
determined.
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Since the driving pressure needed for oil slug mobilization decreases under the influence of vibratory
stimulation, and, considering the experimental results, it is logical to hypothesize that the mechanism of how
vibratory stimulation improves the mobility of an oil slug lies in the fact that vibration facilitates the
development of water film between the oil slug and capillary wall. The higher the frequency is, the more
developed the water film becomes, when the duration of the vibration is fixed. Likewise, the longer the
duration of vibration stimulation is, the more developed the water film becomes, when frequency of the
vibration is fixed.

2) Numerical Study on the Influences of Vibration Excitation on the Water Film Development

In the previous section, the positive effect of vibration excitation on oil slug mobilization is demonstrated
experimentally. An optimal mobilization can be achieved if an external vibratory excitation of proper frequency
is applied, under the conditions of the experiments. Also, the optimal oil slug mobilization is a case in which a
water film is completely surrounding the oil slug without any drainage time. Therefore, it is logical to reach the
hypothesis that external vibratory simulation positively affects the mobilization of the oil slug in straight
capillary tube by facilitating the development of a water film between the oil slug and the capillary tube wall.
However, it is difficult to verify such a hypothesis experimentally due to the limitation of experimental
equipment. Numerical simulation therefore becomes an effective and efficient alternative for the verification of
this hypothesis.

Same as described in section 3.1.2, ANSYS-FLUENT is applied to simulate the experimental procedures without
water injection. In the numerical simulation, an oil slug of 20 mm in length is initially placed in the capillary
tube without water film surrounding it. A user defined function (UDF) is then employed to provide a
longitudinal tube movement, which follows sinusoidal change in the boundary condition. This generates a
sinusoidal excitation similar to the flow system used in the experiments.

Figure 9 shows the numerical results. As shown in the figure, the changes in the shape of the oil slug before and
after applying vibration excitation into the system. The oil slug is originally placed in the tube with two semi-
circle shapes at the end and the main part of the oil slug is contacted with the tube wall. When subjected to
external vibratory stimulation, the bulk of the oil slug remains in its initial position. However, as vibratory
excitation continues, the two ends of the oil slug begin to change their shapes and become slender. Meanwhile
the water begins to seep into the area between the oil slug and the capillary tube wall and a thin water film is
formed. Also, although the water film is formed, the thickness of the water film is not uniformly distributed.

It is clearly demonstrated in the numerical simulation results that under the influence of external vibratory
stimulation, a layer of water film is developed between the oil slug and the capillary wall. It is this water film
that facilitates subsequent mobilization of the oil slug using water injection. Therefore, the numerical result
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supports the hypothesis that vibratory stimulation can facilitate mobilization of the oil slug by developing a
water film between the oil slug and the capillary wall. It is this water film that makes subsequent mobilization
of the oil slug by water injection easier with a lower driving pressure.
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FIGURE 9: DEVELOPMENT OF WATER FILM WITH VIBRATION EXCITATION

Conclusions

The impact of vibration on the amount of water pressure needed to displace residual oil in porous media is not
well understood. To study the impact of vibration frequency and duration on oil slug mobilization, a series of
experiments on a custom designed experimental test bed are carried out. This is a systematic laboratory
exploration of the effect of vibratory stimulation on the driving pressure needed for oil slug mobilization. While
the experimental model is idealized, our results provide useful insights on the mechanism of mobilizing oil in
porous media under vibratory stimulation.

The following conclusions can be drawn from the results of the research:

1.

For an oil slug with certain length, the maximum driving pressure increases with drainage time, the
increasing rate decreases significantly beyond a certain point; for oil slugs with different lengths, the
maximum driving pressure required to mobilize an oil slug is less sensitive to drainage time for longer oil
slugs.

The frequency of the vibratory stimulation plays an important role in oil slug mobilization. Given an oil
slug initially in a stationary state, the maximum driving pressure needed to mobilize the oil slug decreases
as the frequency increases when the other factors are held constant. When the frequency becomes
sufficiently high, the vibratory stimulation can achieve the mobilization effect very close to that achievable
under the ideal condition of zero drainage time.

The duration of the vibratory stimulation also plays a vital role in the effect of oil slug mobilization, as
revealed in the experimental analysis. Given the oil slug is initially in a stationary state, the longer the
duration of the vibratory stimulation is, the smaller the maximum driving pressure is needed to mobilize
the oil slug when vibration amplitude and frequency are fixed. When vibratory stimulation lasts for a
sufficiently long time, it can achieve the same mobilization effect as it would be under a condition of zero
drainage time.
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4. Numerical research is employed to create simulations of the processes of both the water film drainage and
the effect of vibration on the water film development. The numerical results conclude the following:

(1) During the drainage process, the water film between the oil slug and the tube wall drains out due to the
surface tension of oil slug.

(2) For a stationary oil slug, the vibration excitation has positive effect on the development of water film
between the oil slug and the tube wall.

By using driving pressure as an indicator of oil slug mobility, detailed studies of the impact of drainage time, slug
length, vibration frequency, and vibration duration on the maximum required driving pressure are presented. This
research makes contribution to revealing the mechanism of the vibratory mobilization of oil in porous media.
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Abstract

Oil and gas recovery factor is a key parameter for oil industry, and it can be effectively predicted by appropriate data mining
algorithms. In this paper, three regression algorithms and three classification algorithms have been applied to forecast recovery
factor of oil and gas. The three regression algorithms are the support vector regression (SVR), the artificial neural network
(ANN), and the multiple regression analysis (MRA), while the three classification algorithms are the support vector
classification (SVC), the naive Bayesian (NBAY), and the Bayesian successive discrimination (BAYSD). The purpose of this
paper is to demonstrate how to select proper algorithms in three algorithms (SVR, ANN, MRA) for recovery factor regression
and/or three algorithms (SVC, NBAY, BAYSD) for recovery factor classification. In general, when all these six algorithms are
used to solve a real-world problem, they often produce different solution accuracies. Toward this issue, it has been proposed
that a) when an algorithm is applied to a real-world problem, its solution accuracy is expressed with the total mean absolute
relative residual for all samples, R(%), and b) result availability of a given algorithm application is applicable if R(%)<10, and
inapplicable if R(%)>10. A case study of recovery factor in 39 global oilfields has been used to validate the proposed approaches.
This case study consists of two problems: regression and classification. For the regression problem, only ANN is applicable
since its R(%) value is 5.89, whereas SVR and MRA are inapplicable because their R(%) values are 68.9 and 38.4, respectively.
For the classification problem, only SVC is applicable since its R(%) value is 0, whereas NBAY and BAYSD are inapplicable
because their R(%) values are 24.7 and 34.5, respectively. From this case study, it is concluded that the preferable algorithm is
ANN for recovery factor regression, while the preferable algorithm is SVC for recovery factor classification.

Keywords

Data Mining; Support Vector Regression; Artificial Neural Network; Multiple Regression Analysis; Support Vector Classification; Natve
Bayesian; Bayesian Successive Discrimination; Result Availability; Recovery Factor

Introduction

More and more data are being generated in subsurface geosciences (SUBG), and SUBG has already entered “big
data” epoch for many years. For instance, there are about 50 large information systems in PetroChina, and there are
about 590TB SUBG data in only one of them. At present, the major applications of SUBG data in these information
systems are only storage and inquiry, which is far away from fully utilizing the values of these data assets (Li and
Shi, 2015). Moreover, SUBG is facing more and more challenges. How to effectively utilize these “big data” to
resolve some SUBG problems has become one of the study highlights for geoscientists. This has led to the
generation of a promising frontier called data mining (DM) (Han et al., 2012), which is a preferable solution for this
problem.

Since DM emerged from the late 1980’s, many algorithms have been developed or introduced from other
disciplines (such as mathematics, statistics, etc.) to DM (Shi, 2013). The major statistics algorithms in current DM
can be classified into two groups: regression and classification.

Generally, there are three regression algorithms and three classification algorithms commonly used. The three
regression algorithms are the support vector regression (SVR), the artificial neural network (ANN), and the
multiple regression analysis (MRA), while the three classification algorithms are the support vector classification
(SVCQ), the naive Bayesian (NBAY), and the Bayesian successive discrimination (BAYSD).

In the recent years, regression and classification algorithms have seen enormous success in some fields of business
and sciences, whereas the application of these algorithms to SUBG is still in fighting stage. This is because the
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SUBG is very different from the other fields, with miscellaneous data types, huge quantity, different measuring
precision, and many uncertainties to results. Moreover, most of the studied problems in SUBG are nonlinear.

In oil industry (a very important sector of SUBG), oil and gas recovery factor (i.e., the recovered ratio of the total oil
and gas reserves) is a key parameter, as it directedly decides the total oil and gas production (Salehi et al., 2014).
How to determine or predict oil and gas recovery factor has great significance for oil industry. However, there is
almost no successful case study on this problem up to now, which was mainly because of lacking of related data
and suitable techniques.

Based on the principles, methods and programs of DM introduced by Shi (2013), we have done many related
researches of DM for oil industry (Shi et al., 2014; Shi, 2015a and 2015b; Zhang and Shi, 2015; Shi et al., 2015; Mi and
Shi, 2015). For instance, Li and Shi (2015) took 13 samples as a case study of data mining in petroleum production,
and adopted the six algorithms (SVR, ANN, MRA, SVC, NBAY, BAYSD) for forecasting formation flow capacity.

The purpose of this paper is to demonstrate how to collect enough data and select proper algorithms in three
algorithms (SVR, ANN, MRA) for recovery factor regression and/or three algorithms (SVC, NBAY, BAYSD) for
recovery factor classification. Using the data of 39 global oilfields, we applied the above six algorithms for
forecasting both recovery factor and recovery factor classification, which differs much from other related articles to
date, also being the major contribution of this paper.

In general, when all these six algorithms are used to solve a real-world problem, they often produce different
solution accuracies. Toward this issue, it has been proposed that a) when an algorithm is applied to a real-world
problem, its solution accuracy is expressed with the total mean absolute relative residual for all samples, R(%), and
b) result availability of a given algorithm application is applicable if R(%)<10, and inapplicable if R(%)=10. Here
this threshold value (10) is taken due to the particularity of SUBG, while the threshold value (5) may be taken in
other fields. Even in SUBG the threshold value (10) may be suitably adjusted based on a specific application.

The case study of recovery factor in 39 global oilfields from a commercial database has been used to validate the
proposed approach. This case study consists of two problems: regression and classification.

Based on the above results availability of an algorithm for an application determined by its R(%), a flow chart of
the six algorithms (SVR, ANN, MRA, SVC, NBAY, BAYSD) has been presented (Figure 1). Figure 1 illustrates the
running path of each algorithm in the case study.

Start

| Input data,e.g.39 global oilfieds,each oilfield has a recovery factor and its 8 related parameters |

v

Yes

No
cessi 2
r (e.g. this case syudy) A regression problem? ‘l ¢ 2
‘ Run SVR,ANN and MAR I Run SVC,NBAY and BAYSD |
Yes No Yes No
< R(% <10? R(% <102 — - >
‘( SVR is applicable ) ( “)l SVR <107 (e.g. this case syudy) (SVCisapplicable ) ( “)l SVC <107 (' SVCisinapplicable)
¢ (e.g. this case syudy) ¢
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| Output results, e.g. the predicted recovery factors of 39 global oilfields [
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FIG.1 A FLOW CHART OF THE SIX ALGORITHMS (SVR, ANN, MRA, SVC, NBAY, BAYSD)

Methodology

The methodology consists of the following two major parts: definitions commonly used by regression and
classification algorithms; six algorithms (Shi, 2013).
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Definitions Commonly Used by Regression and Classification Algorithms

The aforementioned regression and classification algorithms share the same sample data. The essential difference
between the two types of algorithms is that the output of regression algorithms is real-type value and in general
differs from the real number given in the corresponding learning sample, whereas the output of classification
algorithms is integer-type value and must be one of the integers defined in the learning samples. In the view of
dataology, the integer-type value is called as discrete attribute, while the real-type value is called as continuous
attribute.

The six algorithms (SVR, ANN, MRA, SVC, NBAY, BAYSD) use the same known parameters, and also share the
same unknown that is predicted. The only difference between them is the approach and calculation results.

Assume that there are n learning samples, each associated with m+1 parameters (x1, x2, ..., xm, ¥*) and a set of
observed values (xi, xi2, ..., Xim, yi* ), with =1, 2, ..., n for these parameters. In principle, #>m, but in actual practice

n>>m. The n samples associated with m+1 numbers are defined as n vectors:
x=(xa, Xo, ..., Xim, ¥, ) (i=1,2, ..., 1) 1)

where 7 is the number of learning samples; m is the number of independent variables in samples; xi is the i
learning sample vector; xij is the value of the jthindependent variable in the it learning sample, j=1, 2, ..., m; and yi*
is the observed value of the i learning sample. Equation 1 is the expression of learning samples.

Let xobe the general form of a vector of (xi, xa, ..., xin). The principles of ANN, MRA, NBAY and BAYSD are the

same, i.e., try to construct an expression, y=y(xo), such that Eq. (2) is minimized. Certainly, these four different
algorithms use different approaches and obtain calculation results in differing accuracies.

n

2
E‘[y(xm)_yi] 2)
where y=y(xoi) is the calculation result of the dependent variable in the i learning sample; and the other symbols
have been defined in Eq. (1).

However, the principles of SVR and SVC algorithms are to try to construct an expression, y=y(xo), such that to
maximize the margin based on support vector points so as to obtain the optimal separating line.

This y=y(x0) is called the fitting formula obtained in the learning process. The fitting formulas of different
algorithms are different. In this paper, y is defined as a single variable.

The flowchart is as follows: the 1st step is the learning process, using n learning samples to obtain a fitting formula;
the 2nd step is the learning validation, substituting n learning samples (xi, xi, ..., xin) into the fitting formula to get
prediction values (y1, y2, ..., ys), respectively, so as to verify the fitness of an algorithm; and the 3 step is the
prediction process, substituting k prediction samples expressed with Eq. (3) into the fitting formula to get
prediction values (yu+1, Yns2, ..., Yn+), respectively.

xi=(xi, X2, ..., Xim) (i=n+1, n+2, ..., n+k) 3)

where k is the number of prediction samples; xi is the it prediction sample vector; and the other symbols have been
defined in Eq. (1). Equation 3 is the expression of prediction samples.

In the six algorithms, only MRA is a linear algorithm whereas the other five are nonlinear algorithms, this is due to
the fact that MRA constructs a linear function whereas the other five construct nonlinear functions, respectively.

To express the calculation accuracies of the prediction variable y for learning and prediction samples when the six
algorithms are used, the following four types of residuals are defined.

The absolute relative residual for each sample, R(%): (i=1, 2, ..., n, n+l, n+2, ..., n+k), is defined as

%100 4)

RO6),=[(y,v) ¥,

where yi is the calculation result of the dependent variable in the i sample; and the other symbols have been
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defined in Egs. (1) and (3). R(%): is the fitting residual to express the fitness for a sample in learning or prediction
process.

It is noted that zero must not be taken as a value of y; to avoid floating-point overflow. Therefore, for regression

algorithm, delete the sample if its yi* =0; and for classification algorithm, positive integer is taken as values of yi* .
The mean absolute relative residual for all learning samples, Ri(%), is defined as

R (%) :él R(%), /n ©)
where all symbols have been defined in Egs. (1) and (4). Ri(%) is the fitting residual to express the fitness of

learning process.

The mean absolute relative residual for all prediction samples, R2(%), is defined as
n+k
R %)= 3 R(%), /k (6)
2 i=n+1
where all symbols have been defined in Egs. (3) and (4). R2(%) is the fitting residual to express the fitness of

prediction process.

The total mean absolute relative residual for all samples, R(%), is defined as
n+k
R(%)= 3. R(%), / (n+k) )
i=1
where all symbols have been defined in Egs. (1), (3) and (4). If there are no prediction samples, k=0, then
R(%)=R1(%).
R(%) is the fitting residual to express the fitness of learning and prediction processes.

Six Algorithms

Each of the six algorithms (SVR, ANN, MRA, SVC, NBAY, BAYSD) is performed through two processes: learning
process at first and then prediction process.

1) Learning Process

In the learning process, using learning samples expressed by Eq. (1), each algorithm constructs its own function
y=y(x). The methods of the six algorithms (SVR, ANN, MRA, SVC, NBAY, BAYSD) are described in Appendix A.
It is noted that y=y(x) created by ANN is an implicit expression, i.e. which cannot be expressed as a usual
mathematical formula; whereas that of the other five methods are explicit expressions, i.e. which are expressed
as a usual mathematical formula.

Substituting the values of m independent variables given by the n learning samples expressed by Eq. (1) into the
constructed function y=y(x), respectively, the result (y) of each learning sample for each algorithm is obtained.
The mean absolute relative residual for all learning samples, Ri(%) defined by Eq. (5), for each algorithm is also
obtained.

2)  Prediction Process

Substituting the values of m independent variables given by the k prediction samples expressed by Eq. (3) into
the constructed function y=y(x), respectively, the result (y) of each prediction sample for each algorithm is
obtained. The mean absolute relative residual for all prediction samples, R2(%) defined by Eq. (6), for each
algorithm is also obtained.

From learning process and prediction process, the total mean absolute relative residual for all (n+k) samples,
R(%) defined by Eq. (7), for each algorithm is finally obtained.
Case Study: Recovery Factor in 39 Global Qilfields

This case study consists of two problems: regression and classification. The objective of this case study is to
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calculate the recovery factor (RF, %) of oil and gas, and to determine the recovery factor classification (RFC) for
oilfields that have few production data, which has practical value for predicting oil and gas production and
evaluating their values in early E&P stage.

There are 39 global oilfield samples from a commercial database, and each sample contains 8 independent
variables [x1= total production years, x2= current production stage, x3= current producing well count, x4= total well
count, x5 = original in-place oil equivalent (MMBOE), xs = EUR (Estimated Ultimate Recovery) oil equivalent
(MMBOE), x7= production of cumulative oil equivalent (MMBOE), xs= production rate of current oil equivalent
(BOEPD)] and one variable (y*= RF or yy*= RFC). In the case study, among these 39 samples, 35 are taken as learning
samples and 4 as prediction samples (Table 1) for the prediction of both RF and RFC, in which for RF using SVR,
ANN and MRA, and for RFC using SVC, NBAY and BAYSD. It is noted that this RFC is figured out from RF by
using the conversion rules given in Table 2.

TABLE 1 INPUT DATA FOR RECOVERY FACTOR IN 39 GLOBAL OILFIELDS

Sample Sample Field 8 parameters related to y v
type No. No. x1 | x2 x3 x4 x5 X6 x7 x8 RF? RFC¢

1 FOO1 | 63 | 1 | 465 792 3200 385 3117 16555 | 12.03 5

2 F002 | 21 | 3 82 148 146 57 24 3884 10 5

3 FOO3 | 46 | 5 | 193 308 1850 185 109 7646 | 32.59 3

4 F0O4 | 58 | 3 63 288 405 132 126.8 2535 6.7 5

5 FOO5 | 63 | 2 | 570 800 | 36840 | 2470 | 14524 | 103000 | 58.97 1

6 F006 | 37 | 3 47 9% 3900 2300 1830 63500 46 2

7 F0O7 | 34 | 2 | 201 730 | 25000 | 11500 4394 447052 | 32.8 3

8 FOOS | 53 | 4 7 186 25 8.2 8.1 19 15.08 5

9 F009 | 21 | 2 | 122 178 325 49 25 6353 6.19 5

10 FO10 | 59 | 1 | 2002 | 3632 | 13436 982 2673 71470 | 37.18 3

11 FO11 | 44 | 3 | 153 430 347 129 122 4196 | 42.74 2

12 FO12 | 61 | 3 | 185 632 | 15667 | 7355 3650 335000 | 33.51 3

13 FO13 | 41 | 3 93 326 6900 3580 3697 | 211868 | 30.62 3

14 FO14 | 37 | 1 | 3200 | 4600 967 324 270 20580 | 36.26 3

15 FO15 | 54 | 1 | 145 350 | 60520 | 225830 7222 500000 | 24.39 4

16 FO16 | 37 | 4 | 179 437 353 128 116.6 1910 18.13 5

_ 17 F017 | 50 | 2 | 782 1218 | 41000 | 10000 7083 350000 20 5
I;ii?;if 18 FO18 | 45 | 1 | 100 155 5677 1410 744 105000 | 34.89 3
19 FO19 | 16 | 1 5 10 500 100 845 10000 | 6585 1

20 F020 | 97 | 5 | 838 3708 665 232 223 9078 | 25.64 4

21 F021 | 112 | 3 | 9689 | 30000 | 4000 2634 2191 71550 | 15.6 5

2 F022 | 88 | 1 | 630 1800 | 3900 1000 750 22000 | 149 5

23 F023 | 9 | 1 24 42 1045 163 91 19514 | 3268 3

24 F024 | 48 | 1 88 112 314 468 37.9 4500 | 79.05 1

25 F025 | 39 | 3 | 384 990 563 184 126 3746 | 3536 3

26 F026 | 118 | 3 | 10631 | 47000 | 4400 3478 3065 80019 | 3437 | 3

27 F027 | 55 | 4 60 173 110 389 348 551 63.5 1

28 F028 | 74 | 4 51 331 483 166 165.4 39003 | 11.12 5

29 F029 | 42 | 6 60 86 1600 | 1182.7 789 80306 | 13.91 5

30 F030 | 65 | 1 | 600 2500 | 1960 218 120 6900 | 33.33 3

31 F031 | 52 | 6 95 226 611 85 68.6 5087 | 37.81 3

32 F032 | 48 | 3 | 160 624 | 48000 | 16000 | 12782 | 522641 | 32.09 3

33 F033 | 41 | 4 | 1710 | 3699 | 3420 1293 1164 54158 | 52.89 1

34 F034 | 33 | 4 6 47 1153 370 360 2674 | 10.02 5

35 F035 | 74 | 3 | 2221 | 6000 | 2800 1481 1340 26676 | 32.14 3
36 F036 | 20 | 1 23 31 549 55 31 5000 | (39.04) | (3)
T 37 F037 | 74 | 1 | 2613 | 4121 | 28437 | 7565 5055 246441 | (51.88) | (1)
samples 38 F038 | 44 | 4 33 73 140 45 418 198 266) | (@)
39 F039 | 25 | 1 | 327 643 | 6373 94.1 59.8 11308 | 1477) | ()

a In x2, 1--primary rejuvenating, 2--secondary peak or plateau, 3--secondary decline, 4-- secondary mature, 5-- secondary rejuvenating, 6--
tertiary peak or plateau.

b RF = the recovery factor (%) determined by the production data, number in parenthesis is not input data, but is used for calculating R(%):.

¢ RFC = the recovery factor classification determined by Table 2, number in parenthesis is not input data, but is used for calculating R(%):.
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Recovery Factor RE (reco(\;ZI)'y factor) RFC (recovery factor classification)
Very high recovery factor >50 1
High recovery factor 40< RF<50 2
Intermediate recovery factor 30< RF<40 3
Low recovery factor 20< RF<30 4
Very low recovery factor <20 5
TABLE 3 PREDICTION RESULTS OF RECOVERY FACTOR (RF) IN 39 GLOBAL OILFIELDS
RF
Sample Sample Regression algorithm
type No. v SVR ANN MRA
y R(%)i Yy R(%)i y R(%)i
1 12.03 30.7558 155.659 11.6 3.88 18.7 55.1
2 10 33.2312 232.312 9.35 6.49 35.9 259
3 32.59 32.5433 0.143 32.1 1.67 28.9 11.4
4 6.7 31.0992 364.167 6.19 7.61 -3.6 154
5 58.97 32.4701 44.938 58.1 1.56 33.2 43.7
6 46 31.862 30.735 47.2 2.52 42.5 7.62
7 32.8 32.3528 1.363 32.9 0.169 30.1 8.21
8 15.08 30.8125 104.327 15.2 0.629 22.6 49.7
9 6.19 30.8843 398.939 6.19 0.0000308 16.6 168
10 37.18 32.4168 12.811 36.4 2.05 29.3 21.3
11 42.74 33.1068 22.539 444 3.87 44.2 3.34
12 33.51 30.9235 7.719 35.0 4.53 29.7 114
13 30.62 32.1243 4913 29.5 3.60 31.9 4.23
14 36.26 32.2356 11.099 35.6 1.88 30.7 15.4
15 24.39 31.7768 30.286 224 8.10 21.8 10.6
16 18.13 30.6217 68.901 19.5 7.55 20.6 13.7
. 17 20 30.3865 51.933 16.3 18.7 18.8 6.24
I;z:;izf 18 34.89 33.8271 3.046 327 6.23 400 14.8
19 65.85 34.7358 47.25 67.6 2.59 69.1 4.99
20 25.64 31.1359 21.435 26.2 1.98 20.5 19.9
21 15.6 30.3802 94.745 17.6 12.8 18.8 20.2
22 14.9 30.5754 105.204 15.7 5.62 19.0 27.4
23 32.68 32.3982 0.862 321 1.88 29.9 8.39
24 79.05 34.8936 55.859 79.1 0.000029 77.7 1.68
25 35.36 32.3736 8.446 33.1 6.30 30.3 14.4
26 34.37 32.5481 5.301 34.3 0.149 30.3 11.8
27 63.5 33.5591 47.151 63.0 0.871 44.4 30.1
28 11.12 30.8219 177.175 12.1 8.89 19.9 78.7
29 13.91 33.568 141.323 12.7 8.77 40.0 188
30 33.33 33.23 0.3 36.0 8.04 41.7 25.1
31 37.81 32.4452 14.189 37.1 1.93 37.8 0.0841
32 32.09 32.19 0.312 31.7 1.32 30.0 6.63
33 52.89 33.1232 37.373 52.9 0.0276 38.6 27.1
34 10.02 30.396 203.353 12.0 20.1 18.5 84.9
35 32.14 32.2773 0.427 31.0 3.49 30.1 6.26
36 39.04 32.2065 17.504 24.8 36.5 28.9 25.9
Prediction 37 51.88 32.7885 36.799 44.3 14.7 39.3 242
samples 38 26.6 31.6331 18.921 26.5 0.276 27.0 1.49
39 14.77 30.447 106.141 12.9 12.6 19.8 3.3.8

Regression Problem for Calculating the Recovery Factor (RF)

Using the 35 learning samples with y*= RF and by SVR, ANN and MRA, three functions of RF (y) with respect to 8
independent variables (x1, x2,
respectively. Substituting the values of 8 independent variables given by the 35 learning samples and 4 prediction

..., x8) have been constructed, corresponding to Eq. (A1), Eq. (A3) and Eq. (A5),
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sample (Table 1) in the three functions, respectively, the RF (y) of each sample is obtained (Table 3).

From Table 3 and based on the definition of result availability above, it can be seen that only ANN is applicable
since its R(%) value is 5.89, whereas SVR and MRA are inapplicable because their R(%) values are 68.9 and 38.4,
respectively (Seeing in Table 5).

Classification Problem for Determining the Recovery Factor Classification (RFC)

Using the 35 learning samples with y*=RFC and by SVC, NBAY and BAYSD, three functions of RFC (y) with
respect to 8 independent variables (x1, x2, ..., xs) have been constructed, corresponding to Eq. (A6), Eq. (A9) and Eq.
(A11), respectively. Substituting the values of 8 independent variables given by the 35 learning samples and 4
prediction samples (Table 1) in the three functions, respectively, the RFC (y) of each sample is obtained (Table 4).

TABLE 4 PREDICTION RESULTS OF RECOVERY FACTOR CLASSIFICATION (RFC) IN 39 GLOBAL OILFIELDS

RFC
Sample Sample Classification algorithm
type No. v SVC NBAY BAYSD
y R(%)i y R(%)i y R(%)i
1 5 5 0 5 0 5 0
2 5 5 0 5 0 3 40
3 3 3 0 5 66.7 5 66.7
4 5 5 0 4 20 5 0
5 1 1 0 1 0 3 200
6 2 2 0 2 0 2 0
7 3 3 0 3 0 3 0
8 5 5 0 5 0 5 0
9 5 5 0 5 0 5 0
10 3 3 0 5 66.7 5 66.7
11 2 2 0 2 0 2 0
12 3 3 0 1 66.7 3 0
13 3 3 0 3 0 3 0
14 3 3 0 3 0 3 0
15 4 4 0 4 0 4 0
16 5 5 0 5 0 5 0
Learning 17 5 5 0 5 0 5 0
samples 18 3 3 0 5 66.7 3 0
19 1 1 0 1 0 1 0
20 4 4 0 5 25 4 0
21 5 5 0 5 0 5 0
22 5 5 0 5 0 5 0
23 3 3 0 5 66.7 5 66.7
24 1 1 0 1 0 1 0
25 3 3 0 3 0 3 0
26 3 3 0 3 0 3 0
27 1 1 0 5 400 3 200
28 5 5 0 5 0 5 0
29 5 5 0 5 0 3 40
30 3 3 0 3 0 3 0
31 3 3 0 3 0 3 0
32 3 3 0 3 0 3 0
33 1 1 0 1 0 3 200
34 5 5 0 5 0 5 0
35 3 3 0 3 0 3 0
36 3 3 0 5 66.7 5 66.7
Prediction 37 1 1 0 3 200 5 400
samples 38 4 4 0 3 25 4 0
39 5 5 0 5 0 5 0

From Table 4 and based on the definition of result availability above, it can be seen that only SVC is applicable
since its R(%) value is 0, whereas NBAY and BAYSD are inapplicable because their R(%) values are 24.7 and 34.5,
respectively (Seeing in Table 5).
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Summary of the Case Study

Table 5 summarizes the applicability of each algorithm in the case study.

TABLE 5 SUMMARY OF THE CASE STUDY IN 39 GLOBAL OILFIELDS

Problem Mean absolute relative residual
Algorithm Time consuming on PC? Results availability
type R1(%) R2(%) R(%)
SVR 71.6 44.8 68.9 3s Inapplicable
Regression ANN 4.74 1.60 5.89 30s Applicable
MRA 40.4 21.4 38.4 <ls Inapplicable
SvC 0 0 0 5s Applicable
Classification NBAY 22.2 729 24.7 <ls Inapplicable
BAYSD 61.2 55.4 34.5 1s Inapplicable

a. This program ran on a PC with configuration: HP Z230, Windows 7 (64 bit), Intel E3-1231, 3.40 GHz, 16GB RAM.

Conclusions

The purpose of this paper is to demonstrate how to select proper algorithms in three algorithms (SVR, ANN, MRA)
for recovery factor regression and/or three algorithms (SVC, NBAY, BAYSD) for recovery factor classification, then
to effectively predict it by appropriate DM algorithms and related data. From the aforementioned case study, four
conclusions can be drawn as follows:

1) the proposed total mean absolute relative residual for all samples (R(%)) to express solution accuracy of an

algorithm is practical;

2) the proposed result availability of a given algorithm application (applicable if R(%)<10, and inapplicable if

R(%)=10) is practical;

3) the preferable algorithm is ANN for recovery factor regression, while the preferable algorithm is SVC for

recovery factor classification;

4) oil and gas recovery factor can be effectively predicted by appropriate DM algorithms, which has great

significance for oil industry.
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Appendix A: Methods of the Six Algorithms in the Research

The following will discuss the six algorithms (SVR, ANN, MRA, SVC, NBAY, BAYSD). Because support vector machine (SVM)
has both of classification (SVC) and of regression (SVR) algorithms, SVM is generally introduced ahead. Since the 1990's, SVM
has been gradually applied in natural and social sciences, especially widely in this century. SVM is an approach utilizing
machine-learning based on statistical learning theory. It is essentially performed by converting a real-world problem (the
original space) into a new higher dimensional feature space using the kernel function, and then constructing a linear
discriminate function in the new space to replace the nonlinear discriminate function. Theoretically, SVM can obtain the global
optimal solution and avoid converging to a local optimal solution as can possibly occur in ANN, though this problem in ANN is
rare if ANN is properly coded (Shi, 2013). The SVM procedure was established in the 1990's, and included two principal
algorithms: 1) SVC, such as the binary classification (e.g. Boser et al., 1992; Cortes and Vapnik, 1995; Cristianini and Shawe-
Taylor, 2000; Shi, 2009; Shi and Yang 2010; Chang and Lin, 2011; Shi et al., 2014), and the v-binary classification (Crisp and
Burges, 2000; Scholkopf et al., 2000; Chang and Lin, 2001); and 2) SVR, such as the sregression (e.g. Vapnik, 1998; Chang and
Lin, 2011; Salehi and Honarvar, 2014; Shi et al., 2014), and the v-regression (e.g. Scholkopf et al., 2000; Chang and Lin, 2002). In
the two case studies, the binary classification for SVC and the e-regression for SVR are employed. Moreover, it is better to take
RBF (radial basis function) as a kernel function than to take the linear, polynomial and sigmoid functions under strong
nonlinear conditions (Chang and Lin, 2011), and thus the kernel function used in SVC and SVR is the RBF.

Regression Algorithms

SVR, ANN and MRA use the same known parameters, and share the same unknown to be predicted. Only the real-type results
calculated by each algorithm are different.
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1) SVR

A technique of SVR, &regression (Chang and Lin, 2011; Shi, 2013), has been employed. The formula created by this
technique is an expression with respect to a vector x, which is so-called a nonlinear function y=SVR(x1, x2, ..., xm):

n “ 2
y=3 (& ~a)exp(—7 |l x—x; IF) | +b (A1)
i=1

P N N
where & and a" are the vector of Lagrange multipliers, a=(a1, a2, ..., an) and a’=( a, o, .., o ), 0<ai<C and 0< o <C where

noo.
C is the penalty factor, and the constraint (ai —a;) =0; exp(—y || x - x; ||2) is a RBF kernel function; y is the
i=1

regularization parameter, y>0; and b is the offset of the separating hyperplane, which can be calculated using the free vectors

xi. These free xiare those vectors corresponding to a>0 and ai* >0, on which the final SVR model depends.

a;, ai*, C, and y can be solved using the dual quadratic optimization:

max{% ()Y (@+e) 3 3 [(ai—af)(a,-—a})exp(—7||:q—x,-||2)}} (A2)
aa” li=l i=1 i,j=1

where ¢ (£0) is determined by user.

It is noted that in the two case studies the formulas corresponding to Eq. A1l are not concretely written out due to their large
size.

2) ANN

The ANN procedure has been widely applied since the 1980's (e.g. Rumelhart et al., 1986; Hecht-Nielsen, 1989; Giiler and
Ubeyli, 2003; Shi et al., 2004; Altiparmak et al., 2007; Tabachet al., 2007; Choi et al., 2008; Shi, 2013), and the application of
ANN is still predominant. The formula created by ANN is an expression with respect to m parameters (x1, x2, ..., xm) (Shi,
2013):

y=ANN(x1, x2, ..., Xm) (A3)

where ANN is a nonlinear function, which cannot be expressed as a usual mathematical formula and so is an implicit
expression. ANN consists of one input layer, one or more hidden layers, and one output layer. In Case study 1, only one
hidden layer is employed. There is no theory yet to determine how many hidden layers are needed for any given case, but in
the case of output layer with only one node, it is enough to define one hidden layer. Moreover, it is also difficult to
determine how many nodes a hidden layer should have. For solving local minima problem, it is suggested to use the large
Nhidden=2(Ninput+Noutput)—1 estimate where Nhidden is the number of hidden nodes, Ninput is the number of input nodes and Noutput
is the number of output nodes. The values of the network learning rate for the output layer and the hidden layer are within
(0, 1), and in practice they can be the same.

The term back-propagation refers to the way (Giiler and Ubeyli, 2003), the error computed at the output side is propagated
backward from the output layer, to the hidden layer, and finally to the input layer. Each iteration of ANN constitutes two
sweeps: forward to calculate a solution by using a sigmoid activation function, and backward to compute the error and thus
to adjust the weights and thresholds for the next iteration. This iteration is performed repeatedly until the solution agrees
with the desired value within a required tolerance. The error takes the root mean square error (Hush and Horne, 1993) is

RMSE(%)= I%é(yi —y)? ¥100 (A4)

where yi and y,* are under the conditions of normalizations in the learning process. RMSE(%) is used in the conditions for

terminating network learning.
3) MRA

The MRA procedure has been widely applied since the 1970's (e.g. Chatterjee et al., 2000; Lee and Yang, 2002; Shi et al., 2004;
Singh et al., 2008; Shi, 2013), and the successive regression analysis, the most popular MRA technique, is still a very useful
tool. The formula created by this technique is a linear combination with respect to m parameters (x1, x2, ..., xm), plus a
constant term, which is so-called a linear function y=MRA(x1, x2, ..., xm) (Shi, 2013):
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y=b0+b1x1+bzxz+. Abmxm (A5)

where the constants bo, by, by, ..., bm are deduced using regression criteria and calculated by the successive regression analysis
of MRA. Eq. A5 is a so-called “regression equation”. In rare cases an introduced xx can be deleted in the regression equation,
and in much rarer cases a deleted xtcould be again introduced into the regression equation. Therefore, usually Eq. A5 is
solved via m iterations.

Classification Algorithms

SVC, NBAY and BAYSD use the same known parameters, and also share the same unknown to be predicted. Only the integer-
type results calculated by each algorithm are different.

1) SvVC
A technique of SVC, the binary classifier (Chang and Lin, 2011; Shi, 2013), has been employed. The formula created by this
technique is an expression with respect to a vector x, which is so-called a nonlinear function y=SVC(x1, x, ..., xm):

n 2
y =2 | vier exp( Il x—x; ) | +b (46)

where « is the vector of Lagrange multipliers, a=(a1, az, ..., as), 0ai<C where C is the penalty factor, and the constraint
n

2. Yio =0; exp(—y || x — x; ||2) is a RBF kernel function; y is the regularization parameter, y>0; and b is the offset of the
i=1

separating hyperplane, which can be calculated using the free vectors xi. These free x:are those vectors corresponding to a:>0,
on which the final SVC model depends.

ai, C, and y can be solved using the dual quadratic optimization:

max! 3y~ 3 [aiayyiy; oxply Il % - x; IF)] (A7)
o ——- oYY =7 |l x; — x;

a i ' 20k R e B

It is noted that in the two case studies the formulas corresponding to Eq. A6 are not concretely written out due to their large

size.

2) NBAY

The NBAY procedure has been widely applied since the 1990's, and widely applied in this century (e.g. Domingos and
Pazzani, 1997; Shi, 2013). The following introduces a NBAY technique, i.e. the naive Bayesian. The formula created by this
technique is a set of nonlinear products with respect to m parameters (x1, x2, ..., xu) (Tan et al., 2005; Han et al., 2012, Shi,
2013):

exp| “Ha) _
p (=12, ..., L) (A8)

1
o N27m 20‘.2

jl

N, (x) =TT},

where [ is the class number, L is the number of classes, Ni(x) is the discrimination function of the I* class with respect to x, oj
is the mean square error of xjin Class I, yji is the mean of xjin Class I. Eq. A8 is so-called a naive Bayesian discrimination
function.

Once Eq. A8 is created, any sample shown by Eq. 1 or Eq. 3 can be substituted in Eq. A8 to obtain L values: N1, N, ..., N¢. If

N, = max {Nj}, then
b <L

y=Ib (A9)
for this sample.
Eq. A9 is so-called a nonlinear function y=NBAY (x1, x2, ..., xm).
3) BAYSD

The BAYSD procedure has been widely applied since the 1990's, and widely applied in this century (e.g. Logan and Gupta,
1993; Brown et al., 2001; Denison et al., 2002; Shi, 2013). The following introduces a BAYSD technique, i.e. the successive
Bayesian discrimination. The formula created by this technique is a set of nonlinear combinations with respect to m
parameters (x1, X2, ..., xm), plus two constant terms (Shi, 2013):
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m
By (x) =In(p,) + ¢y + Elcj'xj (I=12,..L) (A10)

where [ is the class number, L is the number of classes, Bi(x) is the discrimination function of the I* class with respect to x, cj
is the coefficient of xjin the [ discrimination function, pr and corare two constant terms in the I discrimination function. The
constants pi, co, cu, ca, ..., cmare deduced using Bayesian theorem and calculated by the successive Bayesian discrimination.
Eq. A10 is so-called a Bayesian discrimination function. In rare cases an introduced xx can be deleted in the Bayesian
discrimination function, and in much rarer cases a deleted xxcould be again introduced into the Bayesian discrimination
function. Therefore, usually Eq. A10 is solved via m iterations.

Once Eq. A10 is created, any sample shown by Eq. 1 or Eq. 3 can be substituted in Eq. A10 to obtain L values: By, By, ..., Br. If

BI = maX{B|},then
b 1<i<L

y=lv (A11)
for this sample.
Eq. A1l is so-called a nonlinear function y=BAYSD(x1, x2, ..., Xm).

Among the aforementioned six algorithms, each of MRA and BAYSD has a special function: the results can be used as
auxiliary data to show the dependence of the predicted value (y) on parameters (x1, x2, ..., xm), which can be used for
dimensional reduction in DM (Shi and Yang, 2010; Shi, 2013). This dependence obtained by BAYSD is more reliable since
BAYSD is nonlinear while MRA is linear.
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