Feature Selection Algorithm Used to Classify
Faults in Turbine Bearings

Mohamad KHALIL!, Joelle AL HAGE!, Khaled KHALIL2

1Azm center for research in biotechnology, EDST, Lebanese University, Tripoli, Lebanon
2MMC Laboratory, Lebanese University, Engineering faculty, Tripoli, Lebanon
Mohamad.khalil@ul.edu.lb; joellealhage@hotmail.com; khkhalil@ul.edu.lb

Abstract

Feature Selection is a very important step that select a few number of feature used for the classification in order to reduce
execution time, to improve accuracy and to enhance performance of the identification system. In this paper we propose new
feature selection methods by combining between relief, mutual information and sequential selection. The new approach is
compared with other existing and we demonstrate some improvement when they are applied to a random dataset and on real
data acquired from wind turbine bearings aiming to detect fault in the turbine using vibration signal.

Keywords

Feature Selection; Sequential Selection; Relief; Mutual Information

Introduction

Feature selection removes any redundant or irrelevant features in order to improve the accuracy and enhance
performance. The feature selection problem can be described as follow: Given a set S of original feature the
purpose is to find a subset Y of S that well predicts the output. This subset Y must increases the classification
accuracy rate and decreases the execution time.

In any feature selection algorithm we must take into account the evaluation function. Langley grouped different
feature selection methods into two groups: filter and wrapper. In filter method we use only the property of the
feature without taken into account the dependence between the features. On the other side the wrapper method is
based on the classification accuracy; wrapper method produces a higher accuracy as the selected features
correspond to the learning algorithms but they suffer of a higher risk of over-fitting than filter methods and they
have high computational cost.

There are many methods for the feature selection, we distinguish between sequential methods that use the
classification as an evaluation function, and relief based on the calculation of distance and the mutual information.

The sequential forward selection is the most used method because of its simplicity and its high accuracy. In this
paper we used and developed the mutual information proposed by Huawen Liu et al., 2011.

The final purpose of this paper is to find new features selection methods and view their classification performance
when they are applied to classification-based random dataset and to data from wind turbine bearings. The aim of
this study is to detect the fault coming from the turbine using only its vibration signal. This signal is acquired using
an accelerometer and we extracted all possible features from this signal that are used in the literature for
classification. Then we developed new techniques to reduce the number of these parameters before applying these
selected ones to the different classifiers.

Parameter Extracted from Vibration Signal

In our study 41 parameters have been extracted from the vibration signal.

Statistical Parameters

Statistical parameters that can be calculated are: the mean, (m), the variance (sigma), the RMS (rms) and the

International Journal of Computer Science and Application, Vol. 4, No. 1— April 2015 1
2324-7037/15/01 001-08
© 2015 DEStech Publications, Inc.
doi: 10.12783/ijcsa.2015.0401.01

2 Mohamad KHALIL, Joelle AL HAGE, Khaled KHALIL

statistical skewness (ss) and the statistical kurtosis (sk) of the original signal.

Parameters Related to the Power Spectral Density:

Several frequency parameters have been extracted from the power spectral density (PSD), Sx(f). In our work, we
use the Welch Periodogram method to calculate the power spectral density of each vibration signal of duration 10
seconds. This Welch Periodogram uses a window of type nfft, with size equal to the length of signal/2, with 50%
overlap. Therefore the number of used windows equals to three. 21 frequency parameters are extracted from this
PSD: mean frequency MPF, Peak Frequency PF, Peak-to-Average Power Ratio, deciles D1...D9 which contain the
median frequency D5 and the energies in ten equal frequency bands of Sx(f) B1..B10. Deciles correspond to the
frequencies D1...D9 that divide the power spectral density into parts containing 10% of the total energy.

Parameters Extracted from Wavelet Decomposition:

Some authors have also used time-frequency methods, such as wavelet decomposition, to characterize the non-
stationary characteristics of the vibration signal. In our work, we used the wavelet Daubechies 4. This choice is
done after studying compared several types of wavelets. After decomposition of each vibration signal into detail
coefficients, we calculate the variances on the following details levels 2, 3, 4, 5 and 6 (named W1, W2, W3, W4 and
WS5). The choice of the details depends on the sampling frequency of our signal (sample rate equal to 1000 Hz).
These selected details represent more than 96% of the signal energy and cover the frequency band of interest.

In total, we have 41 parameters extracted from the vibration signals: m, sigma, RMS, min, max, ss, sk, power of
signal, mean frequency, median frequency, peak of frequency, dissymmetry coefficient, Bl... B10 (energy in ten
equal frequency bands), D1...D9 (the deciles), ratio H/L, spectral entropy H, envelope, the variance of the details
and the approximation obtained after the decomposition of the signals into five levels.

Feature Selection

We will rapidly describe the principle of Sequential Forward Selection, Relief and Mutual Information.

Sequential forward Sequential (SES)

This method is introduced by and it is a part of wrapper method. The principle of this method is to start with an
empty subset and at each time we add a feature that maximizes the value of the objective function] (used to
evaluate the candidates).In our case we use the classification error to evaluate the candidates. So the SFS method
proposed the best subset of features starting with an empty set.

The SFS begin with an empty set of features Y={®@}. The feature x* that give the best classification rate J(Y+x*) is
added to Y. This process continue until the classification rate stops increasing.

The algorithm of SFS is shown below:

1. Start with an empty set of features Yo={®}
Select the best next feature:
x*t=arg max x* ¢ vk [J (Yx+ x*)].
3. IfJT (Yx+x)]>J(Yx).
a. Update Yie1= Y+ x*, k=k+1
b. Go to step 2
4. End

Relief

Relief is initially proposed by Kira and Rendell. Relief is based on the calculation of distance and to each feature it
calculates his weight, the feature with weight greater or equal to a defined threshold is selected. The original relief
only works with binary classes. An extension of relief is Relief-Fll which works with real classes.

In relief we must find the Near Hit and the Near Miss. Near Hit is a neighbor from the same class which have the
minimum distance with selected instance and Near Miss is a neighbor from the other classes. In original relief we

Feature Selection Algorithm Used to Classify Faults in Turbine Bearings 3

find only one Near Hit and one Near Miss from every class. In Relief-F we can find k neighbors in order to reduce
the noise.

The relief-F algorithm is as shown below:

Relief(D, S, No Sample, Threshold)
1. Start with an empty set Y=0
2. Initialise all weight, Wi, to zero
3. for i=1:m (m=No Sample)
a. Randomly choose an instamce Ri from D
b. Find k Nearest Hits (Hz)
c. For each class different from class(Ri) apply:
From the class C find K Near Miss (Mt(C))
d. Forj=1:N (N number of parameter)
Wi=W; -3 %

P(C)

K g 2
1—P(class(R;) B=1 dlff(R]"M]"t)

ek M

4. Choose the parameter with Wj>threshold
5. End

ZC#class(Ri)

Case of binary variable:

diff(Rj,Ij,t)={ 0 .1f R;and Ij; are .equal
1 if the values are different
Case of continuous variable:

Value(R;)—-Value(lj) 2
max(xj)-min (x)) @),

diff(Ry L;¢) =

max(xj) it's the maximal value of the feature x;
Value(R;) is the value of the feature x; for the instance R.

The relief method can't remove redundant feature.
Mutual Information with Clustering

The mutual information MI give the relevance between two variables and it's represented by the above formula:

IOGY)= Tuex Dyev P(x, y)log 20 ?

Instead of calculate only the mutual information between the feature and the classes we will take into account the

dependence between the features. have proposed a method that use the clustering with mutual information for
feature selection.

We define:
So(Cr, Y)=X1(y, Ci) yE ¥ 4)
which represent the mutual information between the selected features and the classes,
CR(y,f)= % @)
where: I(y,f) is the mutual information between the selected features y and the candidate feature f ,H the entropy,
S(f)=yev CR(y, D) (6)

and

4 Mohamad KHALIL, Joelle AL HAGE, Khaled KHALIL

Sw(YU£)=Sw(Y)+S(f) (7)
which represents the within-cluster distance.

Finally we calculate an objective function for evaluating the candidate:

Sp(Cr, Y)+I(£,Cy)
[Y]+Sw(Y)+S(H)

J(F)= (8)

with Y| the number of elementsin Y.

The proposed algorithm is given below:

Initialize : S=Set of all features, Y=0, Cx=C
Calculate the distance Sv(Ci,f)=I(f;C) for each feature f
S5=5-{f}/ f that give I maximal , Y={f}; Sw=0
while 1YI<d do
a. for each candidate fe S
i) Calculate J(f)
ii) Choose f that maximize J(f)
iii) Y=YU{f}; S=5-{f}
iv) Sw=Sw+5(f) , Sp=Sv+I(f;Cx)
End

L

To calculate the mutual information we discretize the features values.

New Method for Feature Selection

Modify Relief

When using the relief method we should determine a threshold. But the choice of this threshold isn't easy. In order
to deal with this problem we propose to use the classification as an evaluation function to select the best feature
given by the relief method.

The proposed algorithm is as shown below:

1. Initialize the set of features Y={®};
S={set of all the features }
2. while the classification error decrease and it's greater then a fixed value do:
a. Calculate the weight of all features in S using then Relief-F algorithms
b. Find the best feature, the one with maximal weight, xi
¢ Y=YU {xj
d. Realize the classification by using only the features in Y
e. Find the classification error by using the confusion matrix
£ Y=Y-{xi}
End

SFS after Relief

In order to arrive to a method that improves the accuracy of the others we will try to use the relief algorithm with
sequential forward selection (SFS). Relief does not take into account the dependence into the parameter and the SFS
suffer of high computational cost. But when we apply the SFS only to the features selected by the relief algorithm
the computational cost will decrease and we should arrive to better results than relief and SFS. In this case the
problem of choice of threshold is solved.

Relief with Mutual Information

The feature selection using the mutual information as it given by take into account the dependence between the

Feature Selection Algorithm Used to Classify Faults in Turbine Bearings 5

features. But this method in some case selects unsuitable features. In order to arrive to a better method for feature
selection we propose to use relief with mutual information (Relief+MI).

The proposed algorithm is as shown below:

1. Apply the mutual information algorithm in a way to select all the features

2. Save the objective function] of each feature using the mutual information

3. Find the weight of all the features using relief algorithm

4. Knowing] and the weight of each feature: multiply these values for each feature

5. Select the features with product value greater than a determined threshold or choose a number k of features.

Performance Evaluation on Random Dataset

To evaluate the performance of the proposed algorithms we must compare them with existing methods like relief,
mutual information, and SFS.

At first we will try our algorithms on a classification-based random dataset and view the performance of each
method. We suppose that we have 30 features over 200 observations. 26 features are chosen randomly and the
other 4 features are chosen like way they distinguish between the classes. We suppose that we have 2 classes.

The number of features selected by the mutual information is fixed to 4 and the number of features selected by the
other methods is determined by their proper conditions.

For the evaluation of performance we adopt the 10-fold cross validation apply to 10 generations of the 30 features.

We take several cases of intersection between the two classes. We begin with case where the 2 classes are separable,
using the 4 significant features, then we increase this intersection.

The classification method used is the K nearest neighbors (KNN) with k=10.

After execution of our algorithm on this random dataset we conclude that the feature selection improve the
classification accuracy after comparison with case without selection. We notice that the SES after relief leads to very
good results with the smaller number of features selected and to a lower computational cost. The method Relief
With Mutual Information improve, when the intersection are not so large, the results given by the mutual
information but it drawbacks that it selects a large number of features even when a small number is enough for a
good classification and it suffers from high computational cost. The results given by Modify relief are not so
propitious. Table 1 shows the errors of different selection methods in function of increasing the intersection
between the classes, d represent the intersection, if d increase the intersection increase. Table 2 shows the number
of features selected by each method.

Now, we will suppose that the number of features is previously set to 5. In this case the method relief with mutual
information improves the results given by mutual information when the intersections are not so large. The method
SES after relief is one from the best methods and it improves in the most case the result given by the SFS method.
The Table 3 shows the error of different methods when the number of features is set to 5 and it shows also the
results given by the genetic algorithm. The results of the genetic algorithm are interesting but not optimal because
of its random character.

From these tables we can conclude that the results given by our proposed methods improve in general the results
given by the others existing methods.
Performance Evaluation on Wind Turbine Bearings

The method proposed in this work is tested on signals measured on a test bench of a wind turbine in our
laboratory. (Figure 1).

The mobile part of the wind turbine has been simulated by a test bench but the propeller is replaced by a motor
with controlling the speed of rotation.

We distinguish between four classes: normal operation, pulley default, large pulley default and bearing default.

6 Mohamad KHALIL, Joelle AL HAGE, Khaled KHALIL

We use a 3D accelerometer and we wish visualize the contribution of each direction in the classification rate. We
placed the accelerometer in different position on this testing bunch.

We calculate 41 features over 280 observations where 70 came from normal operation, 70 with pulley default, 70
with large pulley default and 70 with bearing default. For each type of default, we acquired signals for three
different rotation speeds. For this dataset we will apply our proposed algorithms and we will compare their
performances with other existing. We use the "Labview" for acquisition and "matlab” for treatment.

TABLE 1. THE AVERAGE ERROR IN % OF DIFFERENT SELECTION METHOD IN FUNCTION OF INCREASING THE INTERSECTION BETWEEN THE CLASSES.

Method d=0.1 d=0.2 d=0.3 d=0.4 d=0.5 d=0.6 d=0.7 d=0.8 d=0.9 d=1
Relief 0 0 0 0.4 3.9 5.7 7.4 15.3 16.1 17.8
Modify relief 0 0.2 0.3 0.7 4.6 4.9 7.6 14.9 17.5 21.8
MI 0 0 0.3 0.4 4.0 4.9 7.5 14.7 15.3 18.2
Relief+MI 0 0 0 0.4 4.0 4.9 7.5 14.7 15.3 18.9
SFS 0 0.1 0 1.3 5.1 5.3 8.3 16.7 19.9 21.5

SEFS after relief 0 0 0 0.5 3.3 5 7.2 14.6 17.9 20.4
Without selection 0.6 0.1 0.3 2.5 5.3 6 11.1 17 17.4 19.8

TABLE 2. NUMBER OF SELECTED FEATURE IN FUNCTION OF INCEASING THE INTERSECTION BETWEEN THE CLASSES.

Method d=0.1 d=0.2 d=0.3 d=0.4 d=0.5 d=0.6 d=0.7 d=0.8 d=0.9 d=1
Relief 4 4 4 4 4.1667 4.1667 5.1667 5.9167 6.1667 9.5833
Modify relief 1 1.75 2.9167 4.5833 5.333 5 5.25 4.75 4.3333 3.8333
MI 4 4 4 4 4 4 4 4 4 4
Relief+MI 4 4 4 4 4 4 4 4 4 10.667
SFS 1 1.333 2.25 3.9167 5.6667 5.1667 5.58 5.0833 5.1667 2.25
SES after relief 1 1.333 2.333 3.75 3.8333 3.9167 4.33 4.5 3.75 2.5833

TABLE 3. AVERAGE ERROR IN % WHEN NUMBER OF FEATURES IS SET TO 5.

Method d=0.1 d=0.2 d=0.3 d=0.4 d=0.5 d=0.6 d=0.7 d=0.8 d=0.9 d=1
Relief 0 0 0 1.2 1.7 4 9.3 10.3 16.2 18.7

MI 0 0 0 1.5 1.8 3.7 7.7 10.2 16.5 19.5
Relief+MI 0 0 0 1.3 1.8 3.5 8.7 10.3 17.7 19.2
SFS 0 0.3 0.3 15 3 4 11.3 12.7 16.8 21.7

SES after relief 0 0 0 0.5 2.3 3.2 8.7 11.5 16.7 19.5
GA 0 0 0.1 1 2.2 2.8 7.8 10.3 16 19.2

TABLE 4. AVERAGE ERROR IN %,AVERAGE NUMBER OF SELECTED FEATURE AND THE EXECUTION TIME OF EACH METHOD
(SFFS: SEQUENTIAL FORWARD FLOATING SELECTION, LRS: PLUS L MINUS R, BDS: BIDIRECTIONAL SEARCH).

Direction x of the accelerometer Direction y of the accelerometer Direction z of the accelerometer
Number of Number of Number of
Method Error in % selected Ex‘ecution Errorin % | Selected Ex.ecution Error in %| Selected Ex‘e cution
feature time (s) feature time (s) feature time(s)
WIth?ut 1.7 41 - 7.3 41 - 13.9 41 -
selection
Relief 10.5 6 0.2652 4.6 5 0.3432 14.1 13 0.2652
Modify relief 12.9 74 2.8236 04 4 1.8096 58.7 3.8 2.3712
MI 194 4 1.2168 6.9 4 1.0764 44.6 4 1.1856
Relief+MI 19.8 4 40.0455 0.7 3 35.7242 44.1 3 34.0394
SFS 2.5 3.2 1.8252 0.3 3.2 1.716 6.9 5.8 2.0904
SBS 1.6 9.5 9.3289 52 18.4 6.2556 12.2 9.8 8.8297
SFFS 2.7 3.9 3.4008 0.4 4 4.8984 14.5 4 4.1184
BDS 2.2 5 46.2075 18.5 5 58.984 14.9 5 36.6134
LRS 1.9 6 8.2525 0.4 6 8.1433 14.2 6 6.8172
SFS after relief 0 4 0.936 0.6 3.3 1.4196 7.3 4.4 1.1232

The classification method used is the K nearest neighbors (KNN) with k=1 because it leads to lower errors than the
case k=10.

The Table 4 shows the average error in %, the average number of selected feature and the execution time of each
method for the 3 directions x, y and z of the accelerometer.

Feature Selection Algorithm Used to Classify Faults in Turbine Bearings 7

As we see the x direction is the most significant as it gives the smallest classification error. The z direction leads to
the higher error so this direction is lowly affected by the default state of the machine. The z direction will not give
us any propitious information.

The proposed method SES after relief lead to the best performance with no classification error when we use only
the x direction of the accelerometer with 4 features selected and an execution time of 0.936s which is lower than the
case using the SFS algorithm . So SFS after relief lead to very good result and select a few numbers of features with
an interesting execution time.

When we work on the y direction our proposed method; Modify relief; improves largely the results given by relief.
In fact, the average error given by modify relief is 0.4% which is very low compare with relief that give an error of
4.6%. The execution time of modify relief is slightly higher than relief. The merge of Relief and MI improves the
results given by MI and relief regarding the classification error but it leads to a very high computational cost. SFS
after relief gives good results but they are not the optimal. So our proposed methods can improve the results given
by the other methods in many cases.

After these studies we noticed that the most important features that are selected are: coefficient of dissymmetry,
B1, B3,the variance of the fifth details, entropy, Kurtosis.

FIGURE 1. THE TESTING BUNCH.

Conclusion

In this paper we have proposed new methods for feature selection. At the beginning, we show that the feature
selection decreases the classification error.

Then we perform feature selection on dataset from wind turbine elements and find that our proposed methods SFS
after relief leads to a classification with no errors when we work on the x direction of the accelerometer. When we
work on the y direction the Modify relief and the merge of Relief and MI improve largely the results given by MI
and relief.

The most important selected features to detect the fault in the turbine are: coefficient of dissymmetry, B1, B3, the
variance of the fifth detail (wavelet transform), entropy, spectral Kurtosis.

K nearest neighbour methods was used as classifier. Now, we have to increase our dataset and use a neural
network to decrease the number of errors in classification. Test on more real signals must be done using only the
six pertinent features extracted using the new above methods.

ACKNOWLEDGEMENTS

Authors would like to thank the National Council for Scientific Research, CNRS-Lebanon, and the Lebanese
University for their financial support for realization of the testing bunch.

REFERENCES

[1] Antonio Arauzo-Azofra, José Manuel Benitez and Juan Luis CAstro. 'A feature set measure based on relief' ,pp104-

109,2004Choi, Mihwa. “Contesting Imaginaires in Death Rituals during the Northern Song Dynasty.” PhD diss.,

(2]

(3]

(4]

(3]

(6]

[7]

(8]

9]
(10]

(11]

(12]
(13]

[14]

Mohamad KHALIL, Joelle AL HAGE, Khaled KHALIL

University of Chicago, 2008.

Chiementin Xavier, 'Localisation et quantification des sources vibratoires dans le cadre d'une maintenance préventive
conditionnelle en vue de fiabiliser le diagnostic et le suivi de I'endommagement des composants mécaniques tournants
application aux roulements a billes' , pp26-27, 2007Garcia Marquez, Gabriel. Love in the Time of Cholera. Translated by
Edith Grossman. London: Cape, 1988.

Huawen Liu, Yuchang Mo, Jiyi Wangand Jianmin Zhao. 'A New Feature Selection Method based on Clustering', pp 965-
969,2011.

Igot Kononenko. Estimating attributes:Analysis and extensions of RELIEF. In European Conference on machine learning,
pages 171-182, 1994.

Jean CATALIFAUD METRAVIB RDS, 'Acoustique industrielle analyse', pp 27-32 Pollan, Michael et al., The Omnivore’s
Dilemma: A Natural History of Four Meals. New York: Penguin, 2006.

Kenji Kira and Larry A.Rendell. A pratical approach to feature selection. In Proceedings of ninth international workshop
on machine learning, pages 249-256. Morgan Kaufmann Publishers Inc,1992.

Langley, P. 'Selection of relevant features in machine learning. In: Proceedings of the AAAI Fall Symposium on Relevance’,pp
1-5, 1994.Ward, Geoffrey C., and Ken Burns. The War: An Intimate History, 1941-1945. New York: Knopf, 2011.

Manoranj Dash, H. Liu, 'Feature Selection for Classification', Department of Information Systems & Computer Science,
National University of Singapore, Singapore 119260, pp 131-156, 1997.

Marie-Line Zani. MESURES 754 -, pp 40-43, Avril 2013

Marque C, Leman H, Voisine ML, Gondry J, Naepels P. "Traitement de I'électromyogramme utérin pour la caractérisation
des contractions pendant la grossesse". RBM-News 1999; 21(9):200-11.

Roberto Battiti, "Using mutual information for selecting features in supervised neural net learning", IEEE Trans. Neural
Network, vol.5, no.4, pp.537-550,1994.

Thomas. M. Cover and Joy. A. Thomas, Elements of Information Theory. John Wiley & Sons, 1991.

Whitney, A.W. A Direct Method of Nonparametric Measurement Selection. IEEE Trans. in Computational, 1100--1103
(1971).

Y. Paquier, “Analyse harmonique de séries temporelles irréguliere”, projet de semestre, pp 4-18, printemps 2009.

Mohamad Khalil was born in Akkar Atika, in Lebanon in 1973. He obtained an engineering degree in electrical
and electricity from the Lebanese University, faculty of engineering, Tripoli, Lebanon in 1995.

He received the DEA in biomedical engineering from the University of Technology of Compiegne (UTC) in
France in 1996. He received his Ph.D from the University of Technology of Troyes in France in 1999. He
received his HDR (Habilitation a diriger des recherches) from UTC in 2006. He is currently researcher at
Lebanese University. He is director of the Azm center for research in biotechnology at the doctoral school of

sciences and technology at the Lebanese university. His current interests are the signal and image processing problems:
detection, classification, analysis, representation and modeling of non-stationary signals, with application to biomedical signals
and images.

Khaled KHALIL was born in Lebanon in 1964. He obtained from Jean Monnet University (St-Etienne, France)
a master of sciences and technology on Plastics materials in 1991, a DEA in Macromolecular and composites
materials in 1992 and a Ph.D in Mechanical engineering from F. Rabelais University (Tours, France) in 1995. He
is researcher at F. Rabelais University between 1995 and 1997. He is actually researcher at Lebanese University
since 1998 on collaboration with GeM institute at Ecole Centrale de Nantes (France). His current interests are
the defaults of mechanical elements, the smart composite materials and Rheology.

Joelle AL HAGE was born in Lebanon in 1990. She received in 2013 a master 2 in fiability identification and
diagnosis and an engineering degree in electrical engineering.

Now she's a PHD researcher at "université Lille 1" in France.

The Generalization Ability of Artificial
Neural Networks in Forecasting TCP/IP
Traffic Trends: How Much Does the Size of

Learning Rate Matter?

Vusumuzi Moyo™, Khulumani Sibanda?

Department of Computer science, University of Fort Hare, P. O Box X1314, Alice, South Africa

“lvmoyo®@ufh.ac.za; 2ksibanda@ufh.ac.za

Abstract

Artificial Neural Networks (ANNs) have attracted increasing attention from researchers in many fields. They have proved to be
one of the most powerful tools in the domain of forecasting and analysis of various time series. The ability to model almost any
kind of function regardless of its degree of nonlinearity, positions ANNSs as good candidates for predicting and modelling self-
similar time series such as TCP/IP traffic. Inspite of this, one of the most difficult and least understood tasks in the design of
ANN models is the selection of the most appropriate size of the learning rate. Although some guidance in the form of heuristics
is available for the choice of this parameter, none have been universally accepted. In this paper we empirically investigate
various sizes of learning rates with the aim of determining the optimum learning rate size for generalization ability of an ANN
trained on forecasting TCP/IP network traffic trends. MATLAB Version 7.4.0.287’s Neural Network toolbox version 5.0.2
(R2007a) was used for our experiments. The results are found to be promising in terms of ease of design and use of ANNs. We
found from the experiments that, depending on the difficulty of the problem at hand, it is advisable to set the learning rate to
0.1 for the standard Backpropagation algorithm and to either 0.1 or 0.2 if used in conjunction with the momentum term of 0.5 or
0.6. We advise minimal use of the momentum term as it greatly interferes with the training process of ANNSs. Although the
information obtained from the tests carried out in this paper is specific to the problem considered, it provides users of Back-
propagation networks with a valuable guide on the behaviour of ANNs under a wide range of operating conditions. It is
important to note that the guidelines accrued from this paper are of an assistive and not necessarily restrictive nature to
potential ANN modellers.

Keywords

Generalization Ability; Artificial Neural Networks; Learning Rate Size and Momentum

Introduction

Artificial Neural Networks (ANNSs) have been used in many fields for a variety of applications, and proven to be
reliable. Inspired by biological systems, particularly the observation that biological learning systems are built of
very complex webs of interconnected neurons, ANNs are able to learn and adapt from experience. They have
demonstrated to be one of the most powerful tools in the domain of forecasting and analysis of various time series.
Time Series Forecasting (TSF) deals with the prediction of a chronologically ordered variable, and one of the most
important application areas of TSF is in the domain of network engineering. As more applications vital to today’s
society migrate to TCP/IP networks it is essential to develop techniques that better understand and predict the
behaviour of these systems.

TCP/IP network traffic forecasting is vital for the day to day running of large/medium scale organizations. By
improving upon this task, network providers can optimize resources (e.g. adaptive congestion control and
proactive network management), allowing an overall better Quality of Service (QoS). TCP/IP forecasting also helps
to detect anomalies in the network. Security attacks like Denial-of-Service (DoS) or even an irregular amount of
SPAM can be detected by comparing the real traffic with the values predicted by forecasting algorithms, resulting
in economic gains from better resource management.

International Journal of Computer Science and Application, Vol. 4, No. 1— April 2015 9

2324-7037/15/01 009-09

© 2015 DEStech Publications, Inc.
doi: 10.12783/ijcsa.2015.0401.02

10 Vusumuzi Moyo, Khulumani Sibanda

Literature has shown that unlike all other TSF methods, ANNSs can approximate almost any function regardless of
its degree of nonlinearity. This positions them as good candidates for modeling non linear and self similar time
series such as TCP/IP network traffic. Inspite of this huge advantage, ANNSs are not completely absolved from any
problems. One major issue that limits the applicability of ANN models in forecasting tasks is the selection of the
optimal size of the learning rate. This has a profound influence on the generalization capabilities of the ANN.
Generalization is a measure that tells us how well the ANN performs on the actual problem once training is
complete. Once the ANN can generalize well, it means that it is capable of dealing with new situations such as a
new additional problem or a new point on the curve or surface.

Although individual studies have been conducted and some form of heuristics provided for the selection of the
size of the learning rate, none have been universally accepted as the results are largely contradictory.

In this paper the effect of different sizes of learning rates on the generalization ability of ANNs is empirically
investigated. Although the results presented in this paper are for a particular case study, they provide a valuable
guide for engineers and scientists who are currently using, or intend to use ANNSs.

Related Work

The learning rate, also referred to as the step size parameter, determines how much the weights can change in
response to an observed error on the training set. It is considered a key parameter for a successful ANN application
because it controls the size of each step toward the minimum of the objective function. The learning rate is usually
a value chosen between 0 and 1.

A general consensus amongst ANN practitioners is that a learning rate that is too large often moves too far in the
correct direction, resulting in overshooting a valley or minimum in the error surface. This indelibly leads to longer
training times, because it is continually overshooting its objective and unlearning what it has learned, leading to
poor generalization ability of the ANN. On the other hand, a learning rate that is too small increases training time,
resulting in the ANN taking many more steps than necessary to reach the goal and a greater likelihood of
becoming trapped in a local minimum, or a plateau on the error surface, also resulting in poor generalization
ability. Quite obviously, the best learning rate for good generalization is not so obvious. The selection of the
appropriate size of the learning rate has been a huge problem for a number of ANN users. Studies pertaining to
this aspect of ANN learning, though few, have presented mixed conclusions.

Wilson and Martinez (2001) conducted experiments on speech digit recognition. They conclude that a learning rate
that is too large often hurts generalization accuracy and also slows down training. They further state that, once the
learning rate is small enough, further reductions in size would result in a waste of computational resources
without any further improvement in generalization ability. Richards (1991) also did extensive studies on the
relationship between learning rate and the generalization ability of ANNs in phenome recognition. Their
conclusion was that ANNs trained with higher learning rates tend to have a better generalization ability than those
trained with lower learning rates. However they state that this assertion holds true only for ANNSs trained with a
single hidden layer; when the hidden layers are doubled the opposite is quite true. The authors do not offer much
explanation for this phenomenon except suggesting that it’s an area that needs further insight. Another group of
authors, Mohammad and Luis (2007), using different learning rates, tested the performance of ANNs for several
time series which had been previously reported to have worse results with ANNs. They conclude that high
learning rates are good for less complex data and low learning rates should be used for more complex time series
data.

In light of the uncertainty surrounding the selection of the most appropriate learning rate for ideal generalization
ability of ANNSs, several authors have attempted to offer some sort of heuristics. In practice these heuristics are
frequently used as points of departure for subsequent search by trial and error. Plaut et al.(1986) proposed that the
learning rate should be inversely proportional to the fan-in of a neuron. This approach has been theoretically
justified through an analysis of the Eigen value distribution of the Hessian matrix of the objective function. Reports
from Swingler (1996) suggest that starting with a large value for the learning rate of 0.75 and reducing to 0.25 and
then to 0.1 as the network starts to oscillate is a good way of reaching the global minimum of error, leading to
higher generalization ability of ANNSs. Accounts from Becker and Cun (1986) suggest that for a given neuron, the

The Generalization Ability of Artificial Neural Networks in Forecasting TCP/IP Traffic Trends: How Much Does the Size of Learning Rate
Matter? 11

learning rate should be inversely proportional to the square root of the synaptic weights made to that neuron for
an optimal generalization ability of the ANNSs to be attained. Gonzalez (2000) reports that one- and two-layered
networks with a learning rate of 0.2 and a momentum of 0.3 yield the best combination for good generalization
ability. Unfortunately, this study was only based on simulated data. Richards (1991) shows that for fixed
parameters, almost optimal generalization requires learning to go to zero at an appropriate rate, however
Katidiotis et al. (2000) contend that a more nearly constant learning rate might well be preferable if parameters are
time varying.

Traditionally, learning rates remain fixed during training, but some authors have come up with proposals to
dynamically adjust the learning rate during training. One proposal comes from Jacobs (1998), who suggests that
one should assume that each weight has a different learning rate n,;. The following rule is then applied to each
weight before that weight is updated: if the direction in which the error decreases at this weight change is the
same as the direction in which it has been decreasing recently, then n,; is increased; if not, n,; is decreased. The
direction in which the error decreases is determined by the sign of the partial derivative of the objective function
with respect to the weight. An alternative is to use an annealing schedule to gradually reduce a large learning rate
to a smaller value. This allows for large initial steps, in the region of the minimum. However, Shavlik et al.(1991)
discourage this approach by stating that these methods require the selection of parameters which determine the
rate at which the learning rate is to be adjusted. They also state that the optimization of these parameters is highly
problem-dependent and “... may lead to over adjustment of the weights, resulting in dramatic divergence”.

It is evident that the debate on the most appropriate learning rate for an optimal generalization ability of ANNs is
largely ongoing. Analysis of the existing studies shows a lack of thorough probing on the part of researchers. For
instance there is a widely held perception that the momentum attributed to smoothing bumps in the error surface
by referring to the previous weight is closely linked to the learning rate. If this assertion is remotely true, as indeed
proven by Attoh-Okine (1999) in predicting pavement conditions, and Tsai and Lee (2011) in a hand gesture
recognition system, then any investigation done on the learning rate cannot exclude the momentum term. None of
the authors mentioned thus far has dared to fully conduct systematic investigations in that direction. Although
some heuristics on selecting the optimum combination of learning rate and momentum are found in literature
most of them have not been universally accepted as they are largely based on toy problems with no relevance to
the real world.

At present we are not aware of any major investigations on the effects of the learning rate on the generalization
ability of ANNSs, taking into account the possible influence of a momentum term. Most data used for previous
research were simulated, making it difficult to generalize the conclusions of these studies. Furthermore, these
studies tend to focus on network convergence without paying much dividend on generalization ability, which is an
equally important aspect of ANN learning. The only rigorous studies we are aware of which have come close to
addressing this issue are those conducted by Maier and Dandy (1999), who experimented with various learning
rates and momentum combinations in forecasting salinity in Rivieree river, Australia. They empirically found that
a learning rate of 0.6 and momentum of 0.2 ensured reasonably good convergence and generalization ability of
their networks. Richards (1991), underscored a critical observation on how the sensitivity of networks to learning
rates largely depends on the architecture of the networks. He found that multi hidden layer networks are more
sensitive to the learning rate than single hidden layers. Although he conducted limited investigations of only two
learning rates, 0.1 and 0.01. This is an area which, if fully investigated, has potential for significant strides insofar as
the generalization ability of ANNs is concerned. Therefore continued research on this crucial aspect of ANN design
remains an ardent necessity.

Data and Methods

In our approach for the study we used experimental method which is a proven method for testing and exploring
cause and effect relationships. The benefit of using this method is that it allows the control of variables thereby
enabling the isolation of a particular variable to observe the effects due to that variable alone. In this case our
interest was on the effects of the size of the learning rate on ANN generalization. The software used for the
purposes of this study is Matlab Version 7.4.0.287 (R2007a). Matlab is an application software and programming

12 Vusumuzi Moyo, Khulumani Sibanda

language with interfaces to Java, C/C++ and FORTRAN. In this study, Matlab provides an environment for
creating programs with built-in functions for performance metrics and forecasting using its Neural Networks
toolbox Version 5.0.2 (R2007a). The computer used to conduct this study is an Intel(R) Core(TM)
2CPU6300@1.86GHz. The data was collected from the South African Tertiary Institutions Network (TENET)
website (www.TENET.ac.za). We analysed network traffic data which comprised inbound traffic in (bits/ sec) from
the University of Fort Hare VC Alice Boardroom 101 — Fa 0/1 router. The data spanned from the 1st of March 2010
from 02:00 hours to the 21st of September 2013 02:00 hours in daily intervals, equating to 700 observations. As in all
practical applications the data suffered from several deficiencies that needed to be remedied before use for ANN
training. Preprocessing was done which included Linear interpolation to fill in missing values, which amounted to
7 such observations. Matlab Neural Network toolbox has a built-in function, mapminmax which scales the data
down before training so that it has 0 mean and unity standard deviation and then scales it up again after training,
so as to produce outputs with 0 mean and unity standard deviation. The data was partitioned into training and
testing sets. 547 samples were allocated to the train set whilst 182 were allocated to the test set.

To investigate the effect of the learning rate on the generalization ability of ANNs in predicting TCP/IP network
traffic trends, various layered, fully connected ANNs with a single input neuron, Logistic sigmoid activation
function in the hidden layers and a Linear output neuron were examined. We carried out investigations on both
single and double hidden layer ANNSs.

A supervising script was written to compute the ANN inputs and targets. On visual inspection of the time series a
sliding time window of size 150 was arbitrarily chosen.

Training was stopped after 1000 epochs and the generalization performance of the ANNSs tested by presenting the
unknown test set to the ANNs and calculating the Root Mean Squared Error (RMSE) between the actual and
predicted values. RMSE is a dimensionless value calculated to compare ANN performance. The RMSE on the test
set (MSE,,) was calculated using the following equation:

RMSE,, = ¥, (d, — 0,) 2 1)

where d,, is the desired output for each input pattern and o, is the actual output produced by the ANN. In order to
minimize the random effect of the initial weights on results, for each experiment conducted, 4 training runs were
made and the results averaged. We also ensured that all other variables that could potentially affect the quality of
results remain constant. Hence throughout the duration of our investigations the size of the training set was fixed
at 547 samples and of the test set at 182 samples, weights were randomly initialised in the range of [-0.5, 0.5], the
BP (trainlm) training rule was the weight updating algorithm and the momentum was fixed at 0.2 (unless stated
otherwise).

The Experiments

Generalization ability

0.3
5(7 k-~ 20HN

‘ 40HN
1 -2 60HN &
031 - BOHN ;

[S

Broeegtes -8, L
I .
+ * S B
L S TR +
e o7 S e ; i
w o S %
= o
o

01

0.05

0 | | | I I |
01 02 03 04 05 06 07 08 09 1
Learning rate

FIGURE 1. GENERALIZATION ERRORS (RMSE) FOR THE DIFFERENT LEARNING RATES AT VARIOUS NETWORK ARCHITECTURES.

The Generalization Ability of Artificial Neural Networks in Forecasting TCP/IP Traffic Trends: How Much Does the Size of Learning Rate
Matter? 13

The first set of experiments involved several single hidden layer ANNs trained on various learning rates on
separate occasions. The ANNSs selected for examination had 20, 40, 60 and 80 hidden neurons. These were selected
based on stability times during preliminary investigations. The learning rates were varied according to 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. The choice of the learning rates was purely done on an arbitrary basis. Figure 1
shows the results of those experiments.

In the second set of experiments, we trained a single hidden layer ANN of a network architecture of 60 hidden
neurons, at learning rates of 0.2, 0.4, 0.6, and 0.8 for a different number of epochs in order to ascertain how the
impact of learning rate on generalization ability varies with an increase in number of training iterations. The choice
of the values of the learning rates was motivated by a similar case study by Attoh-Okine (1999) who utilised the
same values of the learning rates for his experiments.

The reason a 60 hidden neuron ANN was selected for investigation was because it exhibited better generalization
performance than other network architectures during preliminary experiments conducted prior to these
investigations.

Figure 2 shows the generalization errors from the experiments.

In the third set of experiments, we assessed the performance of a 2 hidden layer architecture. After conducting
several trial runs on various ANN architectures from preliminary experiments a 2 hidden layer ANN of
architecture (5, 35) i.e 5 first hidden layer neurons and 35 second hidden layer neurons, was chosen as the bases for
conducting these investigations. The bases for arriving at the chosen architecture was the fact that the (5, 35)
network architecture exhibited better generalization performance amongst all the 2 hidden layer architectures
examined in the preliminary experiments.

Generalization errors
0.24m L]

0221

RMSE
L]

77777777777777777777777777777777777

049+

0470 | | | e e
200 300 400 500 600 700
Number of epochs

I I]
800 900 1000

FIGURE 2. GENERALIZATION ERRORS (RMSE) FOR THE DIFFERENT LEARNING RATES AT VARIOUS TRAINING ITERATIONS.

022~
Paulo et al 1997
Yatos ol ol 1996
LTS A rda ot al 1997

. <+<Eh-- Foddy et al, 1596
3 ~~da Gowy o al 1996
02 % «= B} Swingler ot al 19563

- Gopal el ol 1996

018

013 - - L L L . L |
200 300 400 500 600 700 HOO 500 1000

Humbor of spochs

FIGURE 3. GENERALIZATION ERRORS (RMSE) FOR DIFFERENT LEARNING RATES AT VARIOUS TRAINING ITERATIONS FOR (5, 35)
ANN.

14 Vusumuzi Moyo, Khulumani Sibanda

We trained the ANN on 2 different learning rates of 0.1 and 0.01 on separate runs. The results of the generalization
performance are shown in Figure. 3.

Finally, in order to make fair conclusions additional experiments were conducted using different combinations of
learning rates and momentum values so as to assess whether the effect of different learning rates is the same
regardless of momentum. These 2 parameters have been suggested to be quite closely related in literature. We
trained as in the previous case, the same ANN of network architecture (5, 35) using different heuristics of learning
rates and momentum combinations provided in literature. The generalization errors are shown in Figure. 4.

022

Paulo et al, 1997
. Yates et al, 1996
021}k ‘,‘ ---£<-- Ardo et al 1997
K ---&-- Foddy et al 1996
. ---Zx-- Govy et al, 1996
021 ---E}-- Swingler et al, 1996a
~ --~+-- Gopal et al,1996

019

0.18

RMSE

017

046 4 e

015

&
RN
‘B

L L L L L L I
200 300 400 500 600 700 800 300 1000
Number of epochs

FIGURE 4. GENERALIZATION ERRORS (RMSE) FOR DIFFERENT LEARNING RATES AND MOMENTUM COMBINATIONS AT VARIOUS
TRAINING ITERATIONS FOR (5, 35) ANN.

Results and Discussions

In this section we discuss the empirical results on experiments regarding the relationship between ANN
generalization and learning rate. We begin our analysis by examining the results in Figure 1, which depict the
generalization errors of various single hidden layer ANNs trained on various learning rates. From Fig. 1, it would
appear that indeed selecting the optimum learning rate for a given problem is a complex task. From the results, we
note that the best performing ANN is an architecture of 60 hidden neurons, trained on a learning rate of 0.9. We
note that for many of the ANNs examined the lowest generalization errors occurred at lower learning rates mostly
between 0.2 to 0.6, although it is difficult to pinpoint a single universal value which we can safely conclude to be
effective in all cases. However, in many cases a learning rate of 0.6 seems to give the most reasonable
generalization errors. Our results indicate that the smaller ANNs performed badly in these experiments, especially
the 20 hidden neuron and 40 hidden neuron architectures. These two architectures also displayed the most erratic
behaviour, whether trained on smaller or larger learning rates, indicating the intrinsic relationship between
learning rate and network architecture, emphasizing the sensitivity of smaller ANNs to learning rate. Generally
small learning rates produced consistent and better results, whereas large learning rates appeared to cause
oscillations and inconsistent results.

We then trained a 60 hidden neuron ANN at different learning rates of 0.2, 0.4, 0.6, and 0.8 for a different number
of epochs in order to ascertain how the impact of learning rates on generalization ability varies with an increase in
the number of training iterations. The results of that endeavour are shown in Figure 2. From Figure 2 note that the
best generalization performance is attained when the ANN is trained on a learning rate of 0.6. It is evident from the
results that the generalization ability of the ANN increases as the size of the learning rate increases, however this is
only true up to a certain threshold, beyond which any further increment in learning rate results in adverse effects.
This is true judging by the generalization errors incurred in Figure 2. From Figure 2, note that the ANN performs
the worst and is mostly erratic at a learning rate of 0.2, when the learning rate is increased to 0.4, the generalization
ability of the ANN dramatically improves, at a learning rate of 0.6, the ANN is at its best in terms of generalization
ability, however at a learning rate of 0.8, instead of following a similar antecedent, the generalization ability of the
ANN decreases.

The Generalization Ability of Artificial Neural Networks in Forecasting TCP/IP Traffic Trends: How Much Does the Size of Learning Rate
Matter? 15

It is also quite interesting to note that for all the (learning rate-number of iterations) combinations the ANN
performs the best in terms of generalization ability at 750 epochs. Additionally, training time was fast for learning
rates of 0.2 and 0.4, and reasonably fast for rates of 0.6 and 0.8. Note that larger learning rates take many epochs to
reach their maximum generalization ability, which is ultimately poor anyway. The small learning rates take longer
to reach the same accuracy, but yield no further improvement in accuracy.

We now turn our discussions to the results shown in Figure 3 which show the generalization performance of a 2
hidden layer ANN of network architecture (5, 35). The results in Figure 3 indicate that for the task of forecasting a
TCP/IP network traffic time series, a 2 hidden layer ANN is more sensitive to smaller leaning rates than larger
ones. The generalization errors show that the ANN has significantly better generalization ability when trained on a
learning rate of 0.01 than 0.1, this is more pronounced at an epoch size of 500. Although a learning rate of 0.1
outperforms the 0.01 learning rate between 750 to 800 epochs, we cannot not read much into this as it is largely
short-lived

To conclude with the discussions we examine the results of different combinations of learning rates and
momentum heuristics given by various authors. The reason for such was to ascertain whether the effect of different
learning rates on generalization ability is the same regardless of momentum. The experiments were conducted on a
(5, 35) network architecture. The results of this assessment are given in Figure 4. Several conclusions can be
deduced from these results regarding the effect of different learning rates and momentum combinations on the
generalization ability of the ANNs.

From the results, for the case study considered we note that the 0.1-0.9 (learning rate-momentum) combination
given by Foody et al. (1996) fails to produce satisfactory generalization ability. We note extensive oscillatory
behaviour in terms of generalization errors at those values of the learning rate and momentum, this as stated by
Kavzoglu (1999) could be attributed to the fact that the use of large momentum term increases the effect of
oscillations by extending the steps taken in faulty direction or perhaps the ANN could have been stuck in a local
minima resulting from the large momentum term.

It can be seen from Figure 4 that the lowest generalization errors are produced by small learning rate and
momentum combinations, such as 0.25-0.2 of Swinger (1996) and 0.1-0.3 of Ardo et al. (1997). Another important
observation is that the addition of the momentum term to the training considerably slowed down the learning
process.

Although the selection of an appropriate combination of the learning rate and momentum is a mammoth task, it
appears that a very small learning rate, roughly 0.1 and a moderately high momentum term between 0.2-0.4
provided neo-optimal solutions for forecasting TCP/IP traffic trends.

Now, to answer the question: How does the use of a momentum term affect the way in which an ANN responds to the
learning rate? From Fig. 4, we see that the generalization errors obtained in those tests where various combinations
of learning rate and momentum values were tried out, were in essence not that significantly different from the
generalization errors obtained when a momentum value of 0.2 was used as in the previous experiments.
However, the behaviour of the ANNs was less controlled with increasing momentum, as a result of the larger steps
taken in weight space. In fact, when a momentum value of 0.8 was used in conjunction with a learning rate of 0.2
and when a momentum value of 0.9 was used in conjunction with learning rates of 0.1, the steps taken in weight
space were too large and divergent behaviour occurred during training. Discussions on the sizes of training epochs
as a function of the network architecture and the resultant effect upon the learning rate and momentum needs
further insight so that a more generalized result can be proposed.lt is alos important to note that during these
experiments,the ANNs did not show any signs of overfitting.

Conclusions and Future Work

The experimental results regarding the relationship between the learning rate and network generalization are
discussed in section V. We discovered that for a single hidden layer network, a learning rate of 0.6 gave the most
reasonable generalization errors, particularly at an epoch size of 750, and a 2 hidden layer ANN was more sensitive
to larger learning rates than smaller ones. We also noted that smaller learning rates decreased the training time

16 Vusumuzi Moyo, Khulumani Sibanda

quite significantly.

With regards to the impact the momentum term has on the relationship between the learning rate and
generalization ability of ANNs, we discovered that a very small learning rate, roughly of about 0.1 and a moderate
momentum between 0.2-0.4 provided neo-optimal solutions for the task considered. However, the behaviour of
the ANNs became less controlled with increasing momentum, as a result of the larger steps taken in weight space.
We conclude that the degree of effects of learning rate and momentum on the model differ as stated by Wilson and
Martinez (2001). The learning rate is more powerful than momentum, as when a large learning rate and small
momentum are achieved, the result is more precise than the opposite.

For researchers in this domain seeking simply for the learning rate that produces the fastest convergence should
probably settle on a learning rate of 0.4. However, doing so would mean sacrificing generalization ability, which
could be more efficiently achieved by using a larger learning rate, therefore trade-off between these two variables
is an ardent necessity. Unfortunately for these experiments we did not require the training process to converge,
rather, the training process is used to perform a direct search of a model with superior generalization performance.

We also advise, depending on the difficulty of the problem at hand to set the learning rate to 0.1 for the standard
Backpropagation algorithm and to either 0.1 or 0.2 if used in conjunction with the momentum term of 0.5 or 0.6, it
is important not to set the momentum term too large as it would cause the ANN to be greatly unstable. If possible
we advise minimal use of the momentum term as it greatly interferes with the training process of ANNS.

As with almost any area of research, progress leads toward more questions. Based on the research carried out in
this study, our results suggest considerable potential for future work. We plan in extending our investigations to
new self-similar and chaotic time series and to other ANN models and learning parameters. In addition, more
testing is needed to evaluate the applicability of our guidelines to other datasets to be able to make claims about
their robustness and to validate the effectiveness of the conclusions reached in this research.

In order to improve and extend the investigations reported in this work, in addition to constant learning rates, the
use of adaptive learning rate strategies could be examined and their effects on ANN generalization ability
compared to those produced by their counterparts. Another issue which we can possibly look at is using a variable
momentum value. A variable momentum value is currently being researched and its impact upon the
generalization ability is not exactly known to date.

As this study was limited to Feed-forward ANN learning problems with the Backpropagation learning algorithm,
it could be also beneficial to investigate the effects of the size of the learning rate on the performance and
generalization ability of other ANN models, including Self Organizing Maps (SOM) and Learning Vector
Quantization (LVQ), with the aim of deriving some general conclusions that can be used to construct some
guidelines for users in the design of these particular network models.

ACKNOWLEDGMENT

This work is based on the research undertaken within the TELKOM Coe in ICTD supported in part by Telkom SA,
Tellabs, SAAB Grintek Technologies, Eastell, Khula Holdings, THRIP, GMRDC and National Research Foundation
of South Africa (UID: 86108). The opinions, findings and conclusions or recommendations expressed here are those
of the authors and none of the above sponsors accepts liability whatsoever in this regard.

REFERENCES

[1] Ardg, J., Pilesjo, P. & Skidmore, A., 1997. Neural networks, multitemporal Landsat Thematic Mapper data and topographic
data to classify forest damages in the Czech Republic. Canadian Journal of Remote Sensing, 23(2), pp-217-229.

[2] Attoh-Okine, N.O., 1999. Analysis of learning rate and momentum term in backpropagation neural network algorithm
trained to predict pavement performance. Advances in Engineering Software, 30(4), pp.291-302. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0965997898000714.

[3] Becker, S. & Cun, L., 1986. Improving the Convergence of Back- Propagation Learning with Second Order Methods. In K.
Morgan, ed. Proceedings of the 1988 Connectionist Summer School. pp. 67-56.

The Generalization Ability of Artificial Neural Networks in Forecasting TCP/IP Traffic Trends: How Much Does the Size of Learning Rate
Matter? 17

(4]
(3]
(6]
[7]

(8]
9]

(10]

(11]

[12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

Chen, CJ. & Miikkulainen, R., 2001. Creating Melodies with Evolving Recurrent Neural Networks. In Proceedings of the
2001 International Joint Conference on Neural Networks, 2(2), pp.20-60.

Conway, A.J., 1998. Time series , neural networks and the future of the Sun. New Astronomy Reviews, 42(June), pp.343-394.
E. Richards, “Generalization in Neural Networks, Experiments in Speech Recognition,” University of Colarado, 1991.
Foody, G., Lucas, R. & Curran, M., 1996. Estimation of the areal extent of land cover classes that only occur at a sub-pixel
level. Canadian Journal of Remote Sensing, 22(4), pp.428—432.

Gonzalez, S., 2000. Neural Networks for Macroeconomic Forecasting., Canada.

H. Tong, C. Li, J. He, and Y. Chen, “Internet Traffic Prediction by W-Boost : Classification and Regression ,” Neural
Comput., vol. 2, no. 973, pp. 397-402, 2005.

Jacobs, R., 1998. Increased rates of covergence throughlearning rate adaptation. Neural Networks, 1(4), pp.295-308.
Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=938431.

Katidiotis, A., Tsagkaris, K. & Demestichas, P., 2000. Performance Evaluation of Artificial Neural Network - based Learning
Schemes for Cognitive Radio Systems.

Kavzoglu, T., 1999. Determining Optimum Structure for Artificial Neural Networks. In In proceddings of the 25th Annual
Technical Conference and Exhibition of the Remote Sensing Society. Cardiff, UK, pp. 675-682.

Mahmoud, O., Anwar, F. & Salami, M.J.E,, 2007. LEARNING ALGORITHM EFFECT ON MULTILAYER FEED
FORWARD ARTIFICIAL NEURAL NETWORK PERFORMANCE. Journal of Engineering Science and Technology, 2(2),
pp-188-199.

Maier, H.R. & Dandy, C., 1999. Empirical comparison of various methods for training feed-forward neural networks for
salinity forecasting in the River. Water Resources Journal, 35(8), pp.2591-2596.

Plaut, D., Nowlan, S. & Hinton, G., 1986. Experiments on Learning by Back Propagation.

R. Aamodt, “Using Artificial Neural Networks To Forecast Financial Time Series,” Norwegian university of science and
technology, 2010.

S. Chabaa, “Identification and Prediction of Internet Traffic Using Artificial Neural Networks,” |. Intell. Learn. Syst. Appl.,
vol. 02, no. 03, pp. 147-155, 2010.

Shavlik,] W., Mooney, R.J. & Towell, G.G., 1991. Symbolic and neural learning algorithms: An experimental comparison.
Machine Learning, 6(2), pp.-111-143. Available at: http://link.springer.com/10.1007/BF00114160.

Swinger, K., 1996. Financial prediction. Journal of Neural Computing and Applications, 4(4), pp.192-197.

Swingler, K., 1996. Applying Neural Networks:A practical Guide, New York,USA: Harcourt Brace and Company.

Tsai, C.-Y. & Lee, Y.-H., 2011. The parameters effect on performance in ANN for hand gesture recognition system. Expert
Systems with Applications, 38(7), pp.7980-7983. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0957417410014491
[Accessed July 18, 2014].

Vogl, T. et al., 1988. Accelerating the Convergence of the Back-Propagation Method. Biological Cybernetics, Vol 5(9), pp.257-
263.

Wilson, D.R. & Martinez, T.R., 2001. The need for small learning rates on large problems. I[CNN'01. International Joint
Conference on Neural Networks. Proceedings (Cat. No.0O1CH37222), 1, pp.115-119. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=939002

Wilson, D.R. & Martinez, T.R., 2001. The need for small learning rates on large problems. I[CNN'01. International Joint
Conference on Neural Networks. Proceedings (Cat. No.0O1CH37222), 1, pp.115-119. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=939002.

Vusumuzi Moyo received his B.Sc Honours (Computer science) from the University of Fort Hare and is presently studying

towards his Master of Science degree at the same institution. His research interests include artificial intelligence and neural

networks.

Further Considerations about Relationship
between Framework and Application
Components

Reishi Yokomori!, Harvey Siy?, Norihiro Yoshida®, Masami Noro# Katsuro Inoue®

14Department of Software Engineering, Nanzan University, Japan

2Department of Computer Science, University of Nebraska at Omaha, USA

3Graduate School of Information Science, Nagoya University, Japan

5Graduate School of Information Science and Technology, Osaka University, Japan
lyokomori@nanzan-u.ac.jp; thsiy@mail.unomaha.edu; 3yoshida@ertl.jp; yoshie@nanzan-u.ac.jp;

Sinoue@ist.osaka-u.ac.jp

Abstract

A large number of software applications are used over ten years, and are subjected to continuous maintenance activities to
improve their operability, functionality, stability and so on. Through such maintenance activities, the internal structure of the
software system becomes more complex. We believe that studying how the complexity has evolved is important for
understanding the actual maintenance activities. In a previous experiment, we analyzed how code clones and use relations
between application and framework components change through a longitudinal study of open source software. However, we
performed our analysis over only one set of framework and application, so we would like to discuss how our findings
generalize. In this paper, we replicate the previous experiment, targeting several open source projects. By comparing with the
result of the past experiment, we will discuss about generalities of our findings. Moreover, we study the differences between the
trends for both incoming and outgoing edges, how use relations increase and decrease through long term development, and
how code clones are introduced in the software in the early period of the development. These analyses have a certain level of
commonality for understanding actual developers' activities.

Keywords

Component; Use Relation; Code Clone; Multi-Version Analysis

Introduction

Commonly used open source software undergo a long period of maintenance activities: fixing a bug, improving
and adding functionality, handling new environment or new OS, introducing user's request, and so on. A large
body of software are in use for over ten or more years, and the internal structure of such systems becomes more
complex with each change. Each single modification affects its complication in small steps, however, "Little things
make a big difference". As a result, the structure of such software becomes fragile, so developers understand the
importance of refactoring activities and they seize the opportunity to improve the structure of the software while
preserving its functionalities.

In the past study, we analyzed the history of one open source development project by using component graphs,
and we compared how individual application components of each version use framework components, and
conversely, how individual framework components are used by application components (Yokomori 2009). As a
result, we confirmed that the number of application components that use a certain framework component increases
over time. We also confirmed that the number of framework components used by a certain application component
also increases slowly; however, the increase seems to be bounded. Application components that grow to use a lot
of framework components are often decomposed into a group of classes in a subsequent refactoring activity. We
confirmed such pattern of behavior by analyzing the JARP (application) and JHotDraw (framework) projects. We
also analyzed code clones for each version of JARP application, and we introduced the one concerning the

18 International Journal of Computer Science and Application, Vol. 4, No. 1— April 2015
2324-7037/15/01 018-14
© 2015 DEStech Publications, Inc.
doi: 10.12783/ijcsa.2015.0401.03

Further Considerations about Relationship between Framework and Application Components 19

utilization of JHotDraw framework (Yokomori 2012). However we only identified the presence of various types of
clones; we still have to investigate how they were produced and evolved over time. We also understand that
analyses of other software systems are indispensable to generalize all these findings.

In this paper, we expand our past experiment to several open source projects, analyzing code clones and use
relations between application and framework components for each release version. As the targets, we selected
several open source projects that use JHotDraw. We also analyzed several applications that use the Hadoop
framework for distributed processing. By comparing with the result of the past experiment, we will discuss general
observations on the growth trends of use relations. We also characterize the differences in how the number of
framework components used by a certain application component and similarly for the number of application
components that uses a certain framework component changes over time. Moreover, we also analyze how
outgoing use relations from applications increase. We believe the result yields some common insights for
understanding actual developer's activities, and it would be efficient information when we analyze software at a
view point of changes of use relations. With respect to clone relation, we extract framework-related code clones
from several software projects, and we categorize them into three types of code clones. Through these activities, we
study how code clones are introduced in the software in the early period of the development.

In the next section, we introduce background information, such as software components, component graph,
relationship between components, and so on. In the section on Experiments, we introduce results of our new
experiments. For purpose of comparison, we also show the result of JARP's analysis. In the section on Discussion,
we discuss about the results and introduce related works.

Backgrounds

Component and Component Graph

In general, a component is a modular part of a system that encapsulates its content and whose manifestation is
replaceable within its environment (Jacobson 1997, Krueger 1992). We model software systems by using a directed
or a non-directed graph, called a Component Graph. A node in the graph represents a software component and an
edge represents a relation between components. When we focus each component, each component uses other
components and is used by other components as a variable, an instance, by method-call and so on, so we can
consider use relation as a directed edge. We can also consider clone relation when two components have common
or very similar code fragments.

In this study, a node in the graph represents a class or interface, an edge represents a relation between classes. In
the case of the use relation, a directed edge from node x to y represents a use relation meaning that class x uses
class y for declaration of variables, creation of instances, method calls, reference of fields, and inheritance. In the
case of the clone relation, a non-directed edge between node x and y represents a clone relation meaning that class
x and class y have similar code fragments that are longer than 25 tokens.

Framework

Application

FIGURE 1. USE RELATION FROM APPLICATION TO FRAMEWORK.

20 Reishi Yokomori, Harvey Siy, Norihiro Yoshida, Masami Noro, Katsuro Inoue

Use Relations Spanning between Framework and Application

In our experiments, we focus how use relations spanning framework and application increase. Figure 1 depicts the
component graph of an application utilizing a framework. Every solid edge crosses between framework and
application, and dashed edges represent use relation inside of the application or the framework components. At
first, we count how many framework classes each application class uses, by counting outgoing solid edges from
each application class. Next, we count how many application classes gets used by each framework class, by
counting incoming solid edges into each framework class. We obtain several versions of software and analyze
them separately based on the above two criteria, after that we compare the result of each version.

Clone Relations Related to Utilization of Framework

A software framework is a reusable software platform used to develop applications, products and solutions. A lot
of software projects are based on software frameworks, and the utilization of framework facilitates maintenance,
shortening the development period.

When we consider code clone related to utilization of framework, we can imagine two kinds of clone relation. One
kind crosses between framework and application, as shown in Figure 2. This kind of clone is often produced when
application developers copied all of the required code out of a certain framework class. When application
developers realize a framework-related feature by using a test code in a framework as a guide for implement, code
clone between application class and the framework class that has a test code may be produced.

Framework

Application

FIGURE 2. CLONE RELATIONS BETWEEN APPLICATION AND FRAMEWORK.
The other is a code clone inside of application components, as shown in Figure 3. In this case, each code fragment
has a code that uses a framework feature directly or indirectly. This kind of code clone may be produced when
application developers introduce a certain framework's feature under the condition that there is already similar
code fragment that uses the feature in application.

Framework Framework
;; ;;;USES same way
rd ’ F i Y
rd F i

LY
/ uses directly or / \
indirectl
' v B

Code Clone

Applicatlon Application

FIGURE 3. A FRAMEWORK-RELATED CLONE RELATION IN APPLICATION.
In our experiments, we focus on these two kinds of clones, and investigate how these are produced.

Previous works

We have investigated how software has evolved through analyses of relationships among software components. At
first, we analyzed the history of one open source development project by using component graphs, and for each
version, we counted how many outgoing edges each application component has and how many incoming edges
each framework component has (Yokomori 2009).

20

Further Considerations about Relationship between Framework and Application Components 21

We found that the number of edges increases throughout the application's lifetime and we confirmed that the
number of incoming edges of each framework component increases, and the maximum value in each version also
increases. We also confirmed that the number of outgoing edges of each application component increases slowly,
however, the maximum value in each version is almost the same throughout the development. The number of
application components that use a certain framework component increases over time, however, the number of
framework components that an application component uses seems to be bounded. Application components that
grow to use a lot of framework components are often decomposed into a group of classes in a subsequent
refactoring activity. We confirmed such pattern of behavior by analyzing JARP (application) and JHotDraw
(framework). We also analyzed code clones for each version of JARP application, and we introduced the one
concerning the utilization of JHotDraw framework (Yokomori 2012). However, we studied only the introduction of
each clone, and we have to classify them and get a tendency about how developers implant code clones into their
application. We also understand that analyses of other software systems are indispensable to generalize such
findings.

Experiments

Purpose

For each framework in the study, we prepared several software development projects that use it, and for every
release of the application, we analyzed how each application component uses framework components. By
comparing changes in the number of outgoing edges of each application component and the one of incoming edges
of each framework component, we got a more general understanding of how outgoing and incoming edges
between framework and application increase over time. We also analyzed how outgoing use relation increases. By
collecting and classifying reasons of increasing, we hoped to prepare basic standard for explaining the result of this
kind of use relation analysis. For clone relation, we extracted framework-related clone relations from the same set
of software development projects, and classified them into three types of code clones. Through these activities, we
confirmed how code clones are introduced in the software early in its lifetime.

Target Projects

In the past experiment, we analyzed JARP that uses JHotDraw as a GUI framework. JHotDraw is often used as a
Java GUI framework for technical and structured graphics, so we select and analyze the other software projects
that use JHotDraw in this experiment. These are Renew, that is a high-level Petri net editor and simulator,
ChemSense, that is a software for sharing, viewing, and editing of a variety of chemistry representations, JStock,
that is a software for real-time-monitoring stock markets in the world, and xmlBlaster, that is a MOM (Message
oriented Middleware) with a lot of features, respectively. Information of these target projects (including JARP) is

shown in Table 1.
TABLE 1. TARGET PROJECTS (JHOTDRAW).

Project Ver. Period Classes Framework- JHD
Application

Renew 11 1999/03-2012/03 300-> 1503 22-> 1182 51
Chemsense 3 2007/04-2008/07 553-» 558 291> 375 5.2
J5tock 70 2007/08-2012/10 582-= 660 127> 112 7.1
xmlBlaster 40 2005/07-2011/10 1178-»1229 47-> 42 5.2

JARP 11 2001/01-2006-07 41-> 215 91> 325 5.1-54

In this table, we show the number of releases analyzed, the corresponding time period analyzed, the number of
classes of the first and last versions, the number of edges between framework and application in the first and last
versions, and release(s) of JHotDraw that the application used. From this table, we can confirm that Renew and
JARP increase several times in size; on the other hand, ChemSense, JStock and xmlBlaster increase a little.

We also select software projects that use a framework of another domain. We will compare these results with the
results of the JHotDraw-based applications to confirm differences. We select Hadoop as a second framework. The
Apache Hadoop project develops open-source software for reliable, scalable, distributed computing, and a lot of

22 Reishi Yokomori, Harvey Siy, Norihiro Yoshida, Masami Noro, Katsuro Inoue

software projects use it as a framework. As target software projects, we select two projects. The one is Mahout, an
application for machine learning and data mining with scalability, and the other is Nutch, an open source web-
search software. Information on these 2 projects is shown in Table 2. From this table, we observe that Mahout
increases several times in size. Nutch decreases its classes a little, however, use relation between framework and
application doubles.

TABLE 2. TARGET PROJECTS (HADOOP).

Project e Framework- | Hadoop
Application
Mahout T 2002/04-2012//05 AT 2274 775> 1621 0.18.1-
0.20.204
Mutch 10 2006/07-2012/07 410-> 373 730-> 1480 04-
1.0.3

Experimental Procedure

For each development project, we collected source code of each release version from its website, and then we
analyzed them and constructed a component graph for each version based on use relations and clone relations. We
then extracted use relations from application class to framework class and clone relations related to the usages of
framework.

In the experiment, the result of each version was compared with the previous or next version's result, and
examined what classes are deleted or created, and how the result of classes existing in the both version changes.
For extracting use relations, we used Classycle's Analyzer, an analyzer for the static class and package
dependencies in Java applications or libraries. We prepared .jar files that include .class files as inputs. Classycle
then reads them and extracts information about the usages of other classes and tallies how many classes each class
uses and is used by. For extracting clone relations, we used CCFinder, a code clone detection tool with scalability.
In some software project like ChemSense, JStock and xmlBlaster, these results were stable and we observed only a
few changes about using a framework.

Result 1: How Framework Classes were Used by Application?

First, we show the most used framework classes in the five JHotDraw-based applications and the two Hadoop-
based applications. For the five JHotDraw-based applications, Table 3 and Table 4 show the most used framework
classes in the first version and the last version, respectively.

For example, Figure is used by only 3 classes in the first version of Renew, however, in the last version 104 classes
in Renew use Figure. From these tables, we observe that the features used in application vary from one application
to another, however, Figure, Drawing, DrawingView appears consistently on the list, and these classes are
fundamental classes that treat the whole of the features.

TABLE 3. FREQUENTLY USED JHOTDRAW COMPONENTS IN APPLICATIONS (IN THE FIRST VERSION).

Renew ChemSense JStock xmiBlaster JARP
First-ver. First-ver. First-ver. First-ver. First-ver.

Figure 3 Figure 87 Figure 9 Figure 5 DrawingView 8

ColorMap 2 DrawingView 37 DOMInput 8 DrawingView 4 Drawing G

Attribute 1 Connector 20 DOMOutput 8 Drawing 4 Storablelnput 5

Figure

Rectangle 1 Locator 20 Attributekey 6 DrawApplicali 2 Figure 5

Figure on

Child 1 Tool 16 AttributeKeys 5 Figure 2 Storable 4

Figure ChangeEvent QOutput

Abstract 1 Figure 15 Drawing 5 TextAreaFigur 1 Tool 4

Figure Enumeration e

Drawing 1 Drawing 12 DOMStorable 4 TextAreaTool 1 Drawing a

Editor Editor

Creation 1 Relative 13 Resource 4 TextFigure 1 Connection 3

Tool Locator BundleUtil Figure

ArrowTip 1 Drawing 10 Locator 4 TextTool 1 Connector 3
Editor

TextFigure 1 Connection 8 DrawingView 3 DrawingFdito 1 Abstract 3
Figure r Figure

22

Further Considerations about Relationship between Framework and Application Components 23

TABLE 4. FREQUENTLY USED JHOTDRAW COMPONENTS IN APPLICATIONS (IN THE LAST VERSION).

Renew ChemSense Jstock xmiBlaster JARP
Last-var. Last-var. Last-var. Last-var. Last-var.

Figure 104 Figure 115 Figure 9 Figure Figure
Drawing 895 DrawingView 66 Attribute 6 DrawingView 4 FigureAttribute 25
Key Constant
DrawPlugin 57 Connector 21 Attribute 5 Drawing 4 Command 23
Keys
Command 50 Locator 20 Drawing 4 Figure 2 DrawingView 21
Changekvent
Figure 46 Drawing 12 Resource 4 Storable 1 DrawingEditor 19
Enumeration BundleUtil
Drawing 42 Tool 18 Locator 4 TextAreaFigure 1 UndoableComm 17
Editor and
DrawingView 40 Figure 15 DrawingView 3 TextAreaTool 1 Drawing 17
Enumeration
TextFigure 34 Drawing 14 Drawing 3 TextFigure 1 FigureCnumerati 10
Editor Editor on
Draw 34 Relative 13 GroupFigure 3 TextTool 1 StandardStorage 9
Application Locator Format
Parent 33 Connection & Default 3 DrawingEditor 1 Tool a
Figure Figure Drawing

TABLE 5. FREQUENTLY USED HADOOP COMPONENTS IN APPLICATIONS (IN THE FIRST AND LAST VERSION).

Mahout Nutch Nutch
Last-var. First-var. Last-var.

JlobhConf Configuration 216 Configuration Configuration 171
Text 83 Path 157 UTF8 61 Text 154
OutputCollector 47 Text 110 Writable 52 JobConf a3
Configuration 47 Writable 98 Path 52 Writable 32
Path 46 FileSystem 71 FileSystem 46 Path 60
Reporter 44 |ntWritable 68 JobConf 43 Reporter 59
MapReduceBase 41 Mapper 66 Writable 39 OQutputCollector 48
Comparable

FileSystemn 49 PathFilter 56 Reporter 31 FileSystem 46
Writable 26 Reducer 50 OutputCollector 21 Configured 45
Comparable

Reducer 25 Tool 45 Configurable 20 StringUtils 37

For the two Hadoop-based applications, Table 5 shows the most used framework classes in the first version and the
last version. As is the case with JHotDraw, there are some differences between two applications, Configration,
Path, and FileSystem appears consistently on the list, and these are also fundamental classes. Moreover, Text, and
Writable are used by a lot of classes in the last version, and these become also fundamental classes. On the other
hand, JobConf was removed from the Mahout's list of last version, and we can confirm that JobConf was
deprecated.

Result 2: Distributions of Incoming and Outgoing Edges

Next, we counted the number of outgoing edges to framework classes for each application class, and the number of
incoming edges from application class for each framework class. We examined how the number of edges change
over time, and plotted it on the graphs shown in Figure 4 and Figure 5. Figure 4 is for the projects that use
JHotDraw and Figure 5 is for the projects that use Hadoop, respectively. We only plot components whose value is
large.

At first, we explain the result of the five JHotDraw-based applications based on Figure 4. In the case of JStock and
xmlBlaster, modification related to framework is done only once, so the lines on the graph are flat and values have
been stable. We can confirm that framework-related features had been stable during our analysis period.

In the case of ChemSense, each application class uses less than 10 framework components ("ChemSense
Outgoing"). However, there are a large number of such application classes, so Figure and DrawingView are used
by a lot of application classes ("ChemSense Incoming"). We can get only 3 release versions for ChemSense;
however, incoming edges of fundamental framework classes seem to increase. So we suspect that the result of

24 Reishi Yokomori, Harvey Siy, Norihiro Yoshida, Masami Noro, Katsuro Inoue

ChemSense would be similar to JARP or Renew if framework-related features are expanded in the later versions.

In the case of Renew, the number of outgoing edges of application classes appears to be increasing until ver. 2.0.1
at which point the values decrease ("Renew Outgoing"). In the decreasing point, we verified that some features in a
class were decomposed into several classes. The number of incoming edges from several framework classes
increases as a progress of development, and such classes are fundamental framework classes ("Renew Incoming").
Overall trend seems to be no significant change against JARP's one.

CharaSonsz: Incoming ChemSense Cutgning

wEBEEEE
nthwE

o
E-
wn
15
n
5
" [T T e o S e e e
¥ X 13 I3 XA 1A 1A 0¥ 33 23 I3 1D 131 1X IF¥F 14 IAT A4 I0J131d I 3B
- JStock Incoming - I5tock Cutgoing
o
a4 -
L o
61 \
5 \ 15
P
34 LY 0 —*__
:] \Q—— s 3
0 n— ' ' T - —
05T me TOD m. 103 1n4 105 TLE 0®31 =" 10D =" 103 105 ins 106
5. xmiBlaster Incoming = xmiBlaster Outgoing
5 E-l
£ 5 -
3
10 -
2
\ s -
L+ \
o]
184 LOF 11 14 167 L&A ZB8 210 194 LU/ Ll 14 LaZ lea 209 219
. JARP Incoming »
1 3
= 15
o 14
12
L] s
s
e s
s a
z
g+ T T T T T T T ; @ T T T T T T T 1
181 116 L1980 149t 1147 1113 L1394 L1145 L&l 118 11101187 L1112 1015 1114 1118

FIGURE 4. TRANSITIONS OF INCOMING AND OUTGOING EDGES (JHOTDRAW).

Next, we will show the result about applications that use Hadoop based on Figure 5. We confirmed that result of
Mahout shows similar trends as Renew and JARP. Incoming edges from framework classes Configuration, Text,
and Path increase and these classes are used as fundamental ones in the framework. We also confirmed that several
large application classes were decomposed ("Mahout Outgoing"). These observations seem to be consistent with
the trends from applications that used JHotDraw.

In the case of Nutch, the trends for outgoing edges are stable; however, the trends for incoming edges are
somewhat different as the previous ones. We also studied the detail of each update, and framework-related classes
are refactored in some updates. For example, an update into ver. 1.1 eliminated about 200 classes (550 -> 364) and
use relations from application class to framework class also decreased (1681 -> 1353). An update into ver. 1.4 also
includes a restructuring of the usage of framework, so about 400 use relations to framework were eliminated (1766
-> 1365). The graph was affected by the existence of large-scale refactoring ("Nutch Outgoing"); however, Nutch
also has a trend of increasing incoming edges from framework ("Nutch Incoming"). Overall, we confirmed that
feature addition causes increase of use relation.

24

Further Considerations about Relationship between Framework and Application Components 25

Mahouk Dutgoing

o

:'_l?.f"/ W AT
‘ —

o B R W 0P
sunemBEENDY

| -} 3 M [} o or

e A A

.!;“J’J"J’fﬁt’fﬁ FPEEPEPSEF

)
)

FIGURE 5. TRANSITIONS OF INCOMING AND OUTGOING EDGES (HADOOP).

Result 3: How Incoming Edges Increase?

In the case of incoming edges, increase of use relation is conducive to the increase of incoming edges to existing
framework classes, especially about fundamental classes. In the case of outgoing edges, increase of use relation
does not lead to the increase of outgoing edges from existing application classes. Next, we selected three
JHotDraw-based applications and two Hadoop-based applications, the ones whose utilization of framework
changed over time. We counted the number of framework classes that have incoming edges from application and a
number of application classes that have outgoing edges to framework. The result is shown in the Table 6. We can
confirm that the number of application classes that use framework ("out" rows) increases faster than the number of
framework classes used by application ("in" rows). For Renew and Mahout, we also counted the increasing and
decreasing of outgoing edges from existing classes ("Existing" rows) and the increasing of outgoing edges from
added classes ("Added" rows), in Table 7. We confirmed that the increasing of outgoing edges comes from mainly
new classes in an application, and new features are mainly implemented by new classes in an application. Some
existing application classes can get new edges; however, other existing classes lose their edges by decomposition of
their functionality. From a view point of framework classes, application sometimes uses new features in
framework, however, a lot of new classes also uses fundamental classes and features which has already used.

TABLE 6. NUMBER OF FRAMEWORK RELATED CLASSES.
[rroecs | i Lana [ara atn [stn o |7n Lo ot 20t aaen
108 118 150

ChemSense 8 12 A7 68
(JHotDraw)

#edges 291 372 375
out 4 44 72 94 90 108 135 180 221 234 288
Renew in 19 52 64 64 63 79 8 97 119 124 128
(JHotDraw)

lledges 22 207 382 477 429 547 673 691 866 907 1182
oul 14 14 14 24 28 34 56 73 80 80 8
in 4 46 46 52 5S4 S0 60 65 T8 78 78
#edges 91 91 91 123 135 143 198 248 325 325 325
out 125 186 246 228 327 401 332
Mahout in 48 78 93 82 78 79 &8
(Hadoop)

#edges 775 1125 1521 1346 1687 2055 1621

JARP

(IHotDraw)

oul 206 212 229 335 248 351 351 250 258 261
Nutch in 58 58 71 79 77 82 8 80 89 89
(Hadoop)

#edges 730 746 924 1681 1353 1766 1762 1367 1392 1400

TABLE 7. HOW USE RELATIONS INCREASE.

[Project | ____last [2nd |3rd_lath_|5th_l6th _7th 8t _|9th | 10th |1ith
-1 -5 -74 1]

Exisling +2 +4 -14 -185 -17 -191 +

Renew Added 4186 +180 493 26 4113 4141 4203 +192 4233 4274
(JHotDraw)

Total +185 +175 +05 48 +117 +127 +18 +175 +43 +275
#edges 22 207 382 477 429 547 673 691 866 907 1182
Existing 323 -17 615 -180 -319 -544
Mahout Added 1673 4413 1440 4521 +687 +113
(Hadoop)

Total +350 +396 -175 +341 +368 -431
#edges 775 1125 1521 1346 1687 2055 1621

26 Reishi Yokomori, Harvey Siy, Norihiro Yoshida, Masami Noro, Katsuro Inoue

Result 4: Why Outgoing Edges Decrease?

In the past experiment, we confirmed characteristics of application components decomposed during refactoring
activities (Yokomori2009). In earlier versions, such components play multiple roles that it controls and implements
an abstract and large feature. In later versions, implemented codes in such components are split into fragments of
components. It is very likely that the developer divides a large class into several small classes when a size of core
class becomes too big to manage. In such situation, the use of framework is also divided into these small classes. So
such component only controls the abstract and large feature, and uses only the essentials. In the latter period,
classes for implementation and for handler, and so on use many framework components.

In this experiment, we also confirmed several points whose outgoing edges decreases, so we examined why
outgoing edges decreases. We find a case example of decomposition mentioned above, that is CPNApplication in
Renew ver. 2.0.1. In this update, developers extracted features about menu from the class, and new packages about
menu are created and the extracted features are implemented in these packages. As a result, its LOC was reduced
to almost quarter of the original (2000 -> 500), and outgoing edges to framework classes are also decreased (26->19).

Other examples are as follows:

= Developers decide to stop using features in framework, and start to develop the feature in the application.
This is confirmed in SimpleCompositeFigure in Renew.

= Features implemented in early period had not been used much and become unnecessary, so the features are
removed. This is confirmed in AbstractOperator in Jstock, and deleted features are about Input and Output.

* There are application classes that have very similar features in the framework. Developers create a new
bridge part that mediate the use of framework, so direct use relations are wrapped up into use relation from
the class. This is confirmed when CompositeFigure (JHotDraw) was used in XmlBlaster. We also confirmed
in Mahout. At first, BayesDriver and CBayesDriver use the same Hadoop's feature severally, and after then
these classes start to use the feature via HadoopUtil.

* Some framework classes provide very similar features. By replacing them into another one, the number of
use relation from application to framework decreased. We also confirmed the uses of JobConf (Hadoop)
were replaced by the uses of Configration (Hadoop) in Mahout, after Jobconf had become a deprecated
class. We also confirmed that Mahout replaced the use of mapper and reducer into another mapper and
reducer. Both of them are classes in the Hadoop framework, however, the numbers of their outgoing edges
are affected.

In these examples, the number of the outgoing edges of a certain component decreases a lot; however, the scale of
such kind of modifications was not so large. We believe that influential modifications to other components are
mainly the decompositions of large components.

Result 5: How Code Clones were Produced and Removed?

We analyzed each version of 3 applications (Renew, JStock, and ChemSense) that use JHotDraw, and counted how
many types of framework-related code clones through their developments. We also analyse whether these code
clones are removed or not in the later versions. We classified them into the following three categories;

1. Code clones that span framework and application.

2. Code clones inside of application components, and they have code fragment that uses a framework feature
directly or indirectly.

3. Code clones that span framework and application and the similar code fragments also spread into different
application classes.

Table 8 is the result of the categorization, and we confirmed many code clones still exist in the latest version. We
also found that only a few clones are removed, and most of the resolved clones disappeared by upgrading
framework code, or by modifying one side of the code, not both of the code clones.

26

Further Considerations about Relationship between Framework and Application Components 27

TABLE 8. CLASSIFICATIONS OF FRAMEWORK-RELATED CLONES.

JARP B 3 13 7 1 1
Renew 10 8 12 3 2 0
J5tock 1 1 2 a 1] [}
ChemSense 5 0 0 0 il 0

In the early period of the development, several code clones are produced by copying from a class of framework.
Copied classes are fundamental classes and utility classes, and it is likely that these classes have examples of using
a certain framework features. For example, some utility classes in JHotDraw were entirety copied to ChemSense.
Such code clones are not resolved till the introducing feature would be expanded in the application. We also
investigated whether code clones between framework and application will spread into the application and found
that some code clones do spread into the application, however, this occurs less frequently.

In the later version, code clones appear in only a few methods of several application classes, and this kind of code
clone is easy to spread in the application. This is because the structure of the application had already been
established, so developers tend to write new code that aligns with the existing application's structure, and new
classes are created by inheriting a common parent class. We also consider these code clones are comparatively
manageable ones because developers can easily grasp them based on the inheritance relations.

For 2 applications (Mahout, Nutch) that use Hadoop, we studied what kind of framework-related code clones exist
in these applications. By introducing these code clones, we identify what kind of code clones are difficult to be
solved.

= In the early version of Mahout, several classes have similar descriptions for distributed processing by using
JobConf. Some framework classes have such common descriptions, and we confirmed them as code clones.
After Jobconf had become a deprecated class, these classes started to use Configration. As a result, code
clones between framework and application disappeared; however, code clones between application classes
still exist.

= Also in the case of Nutch, several classes have similar descriptions for distributed processing. In the later
version, these classes have undergone major re-design and are arranged by its functionality.

* In the early version of Mahout, several algorithms, such as Bayes and CBayes, are implemented separately,
so they have a lot of common descriptions. In the later version, these implementations are re-designed and
integrated, and then these code clones are resolved.

» There are several combiner and reducer in Mahout, and these combiners (reducers) have several common
descriptions.

* From the result, code clones that exist in similar algorithms are relatively easy to solve by combining
algorithms. On the other hand, code clones that exist in several descriptions for distributed processing are
essentially difficult to solve, because such descriptions have some communality and differences at the same
time.

Discussion

Distributions of Incoming and Outgoing Edges

We analyzed distributions of incoming and outgoing edges for several projects, and some projects are consistent
with the result of JARP. Maximum value of outgoing edges tends to reach a ceiling during development while
maximum value of incoming edges grows unbounded. This kind of ceiling seems to come from the maximum size
of the class description. Our analysis result shows that new code is mainly implemented with new components,
and not added to the existing components in many cases. On the other hand, we also found that results of
XMLBlaster and JStock stay approximately constant. For such projects, the usage of the framework has already

28 Reishi Yokomori, Harvey Siy, Norihiro Yoshida, Masami Noro, Katsuro Inoue

been stabilized, and developer's actions do not affect the usage.

We also get similar results analyzing applications for the Hadoop framework. In the case of Nutch, class structure
was revised several times and at a large scale. Actually the number of use relation from application to framework
decreases about 400 for each update. Its result was strongly affected by these trimming, however, we can find
similar tendency from the result.

Increase of Edges from Application to Framework

We mentioned in the previous section that the number of use relation increases through feature addition. We can
interpret the use relation's increase from the transition of incoming edges, however, it is difficult to interpret the
use relation's increase from the transition of outgoing edges. From the experiment, we find that the increase of
edges is mainly caused by new classes, and the number of classes that have use relations to framework increases
significantly.

We consider a situation that developers introduce new features. New features are implemented by using new
framework features in some cases, and also by using the already introduced features in another cases. In both
cases, fundamental classes are always used heavily. So incoming edges of such fundamental classes grows. We also
consider a situation that a large class is decomposed into several small classes. In this case, at first the target class
plays multiple roles that it controls and implements an abstract and large feature. After decomposition, individual
classes for each feature are created and the target class only controls the ambiguous and large feature, and uses
only the essentials. The target class lose incoming edges about the extracted features; however, some classes
created by the decomposition get the edges. Each decomposed class also has to use fundamental framework class
for management of its own features. Also in this case, the number of application class that need framework features
increases, and fundamental framework classes become to have a lot of incoming edges.

Code Clones Related to Framework

In the experiment, we classified framework-related code clones into several categories. We confirmed that some
code clones are produced by copying the entire class from framework, and such code clones are produced mainly
in the early stage of development. This is because there is no restriction about how developers introduce
framework features, and developer's chief priority was to ensure that their products are realizable. When
implementing similar algorithms, these algorithms are often implemented independently.

As the development goes underway, developers start to be concerned with management of existing source code.
We observed that developers have to write very similar methods in several application classes in the organized
class structure, according to their inheritance relationship. The class structure in the application is re-organized in
preparation for an implementation of a lot of classes that treat very similar features. After then, such features are
implemented along with the new application's structure, and code clones sometimes appear as a result. The
respective classes carry out different processing after all, so these code clones are sometimes difficult to be solved.
In the early stage of development, it is difficult to decide a method for utilization of framework, so it is likely that
this re-organization is important for maintaining long term quality of code.

We expected a situation that there are code clones that span between framework and application, and such code
clones also spread into different application classes; however, this occurred less frequently. We believe that this is
because developers will re-organize application's class structure before code clones spread, to prevent a large
decline in its quality, and that "Rule Of Three" for refactoring is an appropriate concept and is practiced adequately
(Fowler1999).

How Do We Utilize The Findings of Evaluations?

From a viewpoint of use relation analysis, our ultimate goal is establishment of the technique that can point out
application components which should be modified or carefully inspected, and can roughly estimate the cost of
upgrading to a new framework version from several viewpoints.

For example, software components related to management of added components grew through maintenance

28

Further Considerations about Relationship between Framework and Application Components 29

activities as reflected by the increase in outgoing edges. Such components often become bloated and developers
divide such components into several small classes in the refactoring. Transitions of outgoing edges of each
component would be good information for making such decision, and we consider a development of support
environment.

For another example, we consider a situation where existing framework classes are deprecated in the new version
of framework. Because of this, existing application classes need to be migrated based on recommended upgrade
plan. In such case, developer has to specify where the deprecated classes are used, to manage how to carry out the
necessary changes, and to specify their sphere of influence. We plan to establish a support tool for these
modifications, and then to add the function to estimate those costs.

The analysis results for use relations can also contribute towards an understanding of good framework design. We
observe that the applications grew much faster than the frameworks. Furthermore, use relations continued to
increase while outgoing edges appear to be bounded. This indicates that even as the applications grew, became
more complex and increasingly depended on the framework, the framework APIs remained relatively stable, able
to accommodate the increasing application needs. Thus both frameworks we studied appear to have APIs that are
designed well.

Code clone analysis can be used to understand how to manage code clones already existing in the applications,
through maintenance activities. Even if the structure of application has already organized, certain types of code
clones still exist because of the stylized description or very similar description for implementation of similar
features. When new related features are added under such environment, existing code clones derives and have a
possibility to get more variousness, and management becomes more difficult. By assessing which framework
components are used by the existing code clones, we can notify developers that the existing code clones may derive
when a certain framework component is used. We consider this kind of support is useful for actual maintenance
activities.

Related Works

Previous research on analysis of software repositories have focused on understanding reasons of software
changes(German 2003), identifying the effects of communication delays among developers on software
development(Herbsleb 2001), detecting potential software changes and incomplete changes (Zimmermann 2004),
and so on. Johnson proposed an approach that automatically records developer's activities with the objective of
finding a relation between the internal characteristics (size and time, etc.) and the external characteristics (quality
and reliability of products, etc.) rather than measuring updates (Johnson 2004). Tamura proposed a new approach
to software reliability assessment based on deterministic chaos theory and confirmed its effectiveness by applying
it to several development histories of open source software (Tamura 2008). Black investigated fault data extracted
from multiple versions of the open source system, by using two of Weiser’s original slice-based metrics (Tightness
and Overlap) (Black 2009). Bhattacharya represented a way of modelling software structure by using two graphs
that represent products and process, and suggested a way of extracting metrics for predicting bug severity, high-
maintenance software parts, and failure-prone releases, and so on(Bhattacharya 2012). They also confirmed its
effectiveness by applying on 11 open source projects. Our research objective is to obtain new findings through the
experiment that examines how clone and use relations become complex as the development goes underway.

From the viewpoint of use relation (component dependency) analysis, there is active research in architecture
recovery. Zhang represents OO system by using WDCG (Weighted Directed Class Graph), and suggested a
clustering algorithm for recovering high-level software architecture (Zhang 2010). Constantinou represents
hierarchical relationships between components as D-layer, by contracting closed paths in component graph, and
investigated relationships between architecture layer and design metrics (Constantinou 2011). We consider that our
contribution is applying dependency analysis to multi-version analysis.

From the viewpoint of clone analysis, Mondal analyzed the stability of several kinds of cloned codes, and they
reported that Type3 clones, known as gapped clones, have higher stability than other clones (Mondal 2012). In our
experiment, we also find a lot of such gapped clones from classes in an organized class structure, and their
indication also matches our result. Antoniol analyzed the evolution of code duplications in 19 versions of the Linux

30 Reishi Yokomori, Harvey Siy, Norihiro Yoshida, Masami Noro, Katsuro Inoue

kernel (Antoniol 2002). Their target system seems to be relatively stabilized, so the evolution of common ratio is
also stabilized through these versions. They also reported that recently-introduced architectures tend to exhibit a
slightly higher cloning ratio. From our experiments, code clones produced after the middle period has similar
characteristics; however, code clones produced in the early period seems to have another characteristics. We
consider that there is significant value to analyse clones produced in the early period.

Conclusions

In this paper, we target several open source projects that use JHotDraw or Hadoop as a framework, and analyze
code clone and use relation between application and framework components for each release version. We find that
the results for most projects are similar to the result of JARP. Maximum value of outgoing edges tend to reach a
ceiling during development, on the other hand, maximum value of incoming edges grows through development.
As a different tendency, some results keep approximately constant value. For such projects, the usage of the
framework has already been stabilized, and developer doesn't change the usage.

We confirmed the use relation's increase affects the increases of the number of classes that treats framework
features, and each such application class uses fundamental framework classes, so some framework classes have a
lot of incoming edges. This suffices to explain how distributions of incoming and outgoing edges change as the
development goes underway. We examined several points where the number of outgoing edge of the application
class decreases. As a result, we find several cases, such as a creation of a new bridge class, stopping a use of
framework feature, unification and replacement of the usage, and so on. We can consider that decompositions of
large components are performed in the point that outgoing edges decreases a lot. Finally, we confirmed that some
code clones are produced by copying entire classes from the framework in the early stage of development. As the
development goes underway, the class structure in the application is re-organized, after then such features are
implemented along with the new application's structure, and code clones sometimes appear as a result. We
consider this re-organization is important for maintaining long term code quality.

Our ultimate goal is establishment of the support tools based on findings from use relation analysis and code clone
analysis. We are now implementing a tool that shows transitions of clone and use relation as a table and a graph,
and we plan to expand upon it as an analysis infrastructure.

REFERENCES

[1] Antoniol, Villano, Merio, Penta. "Analyzing cloning evolution in the Linux kernel". Information and Software Technology,

vol.44, no. 13, pp 755-765, 2002.

[2] Bhattacharya, Iliofotou, Neamtiu, Faloutsos. "Graph-Based Analysis and Prediction for Software Evolution". Proceedings

of the 2012 International Conference on Software Engineering, pp 419-429, 2012.

[3] Black, Counsell, Hall, Biwes. "Fault analysis in OSS based on program slicing metrics". Proceedings of the 35th Euromicro

Conference on Software Engineering and Advanced Applications, pp 3-10, 2009.

[4] Constantinou, Kakarontzas, Stamelos. "Towards Open Source Software System Architecture Recovery Using Design

Metrics". Proceedings of the 15th Panhellenic Conference on Informatics, pp 166-170, 2011.
[5] Fowler, Beck, Brant, Opdyke, Roberts. "Refactoring: Improving the Design of Existing Code." Addison Wesley, 1999.

[6] German, Mockus. "Automating the measurement of open source projects". Proceedings of the 3rd Workshop on Open

Source Software Engineering, pp 63-67, 2003.

[7] Herbsleb, Mockus, Finholt, Grinter. "An empirical study of global software development: Distance and speed".

Proceedings of the 23rd international conference on Software Engineering, pp 81-90, 2001.

[8] Jacobson, Griss, Jonsson. "Software Reuse". Addison Wesley, 1997.

30

9]

(10]

(1]

(12]

(13]

(14]

[13]

(16]

Further Considerations about Relationship between Framework and Application Components 31

Johnson, Kou, Agustin, Zhang, Kagawa, Yamashita. "Practical automated process and product metric collection and
analysis in a classroom setting: lessons learned from Hackystat- UH". Proceedings of the 2004 intl. Symposium on

Empirical Software Engineering, pp 136-144, 2004.
Krueger. "Software Reuse". ACM Computing Surveys, vol.24, no. 2, pp 131-183, 1992.

Mondal, Roy, Rahman, Saha, Krinke, Schneider. "Comparative Stability of Cloned and Non-cloned Code: An Empirical
Study". Proceedings of the 27th ACM Symposium on Applied Computing, pp 1227-1234, 2012.

Tamura, Yamada. "A Method of Reliability Assessment Based on Deterministic Chaos Theory for an Open Source
Software". Proceedings of the Second International Conference on Secure System Integration and Reliability Improvement,

pp 60-66, 2008.

Yokomori, Siy, Noro, Inoue."Assessing the Impact of Framework Changes Using Component Ranking". Proceedings of

25th IEEE International Conference on Software Maintenance, pp 189-198, 2009.

Yokomori, Siy, Yoshida, Noro, Inoue. "Evolution of Component Relationships between Framework and Application".

Journal of Computers, Computer Society of the Republic of China, vol.23, no. 2, pp 61-79, 2012.

Zhang, Qiu, Tian, Sun. "Object-oriented software architecture recovery using a new hybrid clustering algorithm".

Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, pp 2546-2550, 2010.

Zimmermann, Weissgerber, Diehl, Zeller. "Mining version histories to guide software changes". Proceedings of the 26th

international conference on Software Engineering, pp 563-572, 2004.

Generating A New S-Box Inspired by
Biological DNA

Auday H. Saeed Al-Wattar, Ramlan Mahmod?, Zuriati Ahmad Zukarnain®, Nur Izura Udzir*

Computer Science and Information Technology, University Putra Malaysia/Affiliation, Universiti Putra Malaysia
43400 UPM SERDANG SELANGOR MALAYSIA

“ahsa.alwattar@gmail.com; 2ramlan@upm.edu.my; 3zuriati@upm.edu.my; ‘izura@upm.edu.my

Abstract

Many scholars have attempted to use new methods inspired by DNA bio-techniques in the domains of cryptography and
steganography. In this article, a new S-Box was designed inspired by biology DNA techniques to be used for SPN symmetric
block ciphers. The new S-Box is used in order to make use of biological process as inspiration in creating the S-Box as simple
and secure approach. This article uses the new S-Box within the AES (Advanced Encryption Standard). The National Institute of
Standard and Technology (NIST) tests have been used to test the cipher which uses this new S-Box. The results of the tests
demonstrate that it effectively passed all the randomness tests of NIST. In addition, the S-Box testing criteria were conducted to
test the security of the new S-Box; the results of these tests indicate that the new S-Box has good security.

Keywords
Algorithm; Bblock Cipher; DNA; AES; S-Box; Randomness

Introduction

cryptography has been and is still by far the most efficient means used to achieve secrecy.In the cryptography
domain and for any symmetric cryptographic algorithm, the S-Box(substitution Box) is the non-linear unit of
symmetric encryption algorithms, that carries out substitution (Kazlauskas & Kazlauskas, 2009). Usually, the
cipher uses the S-Box to build the association of the key and the cipher, which is called confusion according to
Shannon (Braeken, 2006). Since the security of the whole cipher is dependent on the S-Box, the better the design of
the S-Box will result in the most secure cipher as a whole (Adams & Tavares, 1990; Detombe & Tavares, 1993;
Leander & Poschmann, 2007). Depending on this concept it can be considered that one of most significant reasons
for designing, modifying or working with the cipher S-Box is to enhance the entire cipher and make it totally
immune and secure.

There are numerous techniques used by the researchers in designing and modifying the S-Box. as in (Clark, Jacob,
& Stepney, 2005), (Tang, Liao, & Chen, 2005), (Tran, Bui, & Duong, 2008), (Canright & Batina, 2008), (Chen, 2008).
The employing of DNA as a way of cryptography remains in the preliminary phase. One of the most important
reasons lies in the need for a high tech lab in addition to a method that obviates the highly labor intensive means of
extrapolation.

However, this challenge has led researchers to find an alternate process in utilizing DNA cryptography, by the use
of digital DNA cryptography or pseudo DNA cryptography. This kind of cryptography was inspired by the real
DNA process.

A number of previous work have been done within the context of DNA cryptography,(Gehani, LaBean, & Reif,
1999) proposed DNA One-Time Pad, that hides information in DNA strands as a steganography, and(Amin, Saeb,
& El-Gindi, 2006) proposed a virtual DNA cryptographic method employed the principal initiatives of the central
dogma molecular biology. in addition to (Ning, 2009) which launched a new cryptographic technique that depends
on the central dogma of molecular biology. Many other researchers have adopted the proposing of different new
cryptographic techniques that are inspired by the techniques of real DNA, such as (Leier, Richter, Banzhaf, &
Rauhe, 2000) (G. Cui, Qin, Wang, & Zhang, 2008) (Tornea & Borda, 2009) (Sadeg, Gougache, Mansouri, & Drias,
2010) (Sabry, Hashem, & Nazmy, 2012) (Kartalopoulos, 2005; Singh, Chugh, Dhaka, & Verma, 2010).Although, all

32 International Journal of Computer Science and Application, Vol. 4, No. 1— April 2015
2324-7037/15/01 032-11
© 2015 DEStech Publications, Inc.
doi: 10.12783/ijcsa.2015.0401.04

Generating A New S-Box Inspired by Biological DNA 33

previous works on DNA have concentrated on proposing a cryptographic method inspired from real DNA, no one
has proposed or suggested a cryptographic system (cipher) that depends on the S-Box that has been designed or
created using bio-inspired techniques to avoid the algebraic, differential and linear attacks, as well as increase the
security of the key cipher by depending on non-classical means for the generating process.

This paper proposes a novel technique for gaining a powerful (8x8) S-Box based on operations that have been
inspired from real biological processes, especially some operations of molecular DNA processes and structure.
Subsequently, it tests the new S-Box using the S-Box testing criteria and the NIST randomness tests for the
cryptosystem that used the DNA-based S-Box.

Cryptosystem

Cryptography system or Cryptosystem is a technique that permits some parties to communicate in secure way.
Usually the cryptosystem is composed of a number of items as: plaintext P,, ciphertext C, , K is the key, the
encryption method Ey ,finally the decryption method Dy .

If Ey is encryption method, and Dy is decryption method the mathematic represent is as follow:

VkEKHEk ande IDk(Ek(S))=SVSEPt.

Substitution Box (S-Box)

S-Box is the main non-linear transformation of an encryption algorithm. It substitutes a set of input bits with a
different set of bits known as its output bits. If S-Box denoted by m; then:

mg: {0,1}" — {0,1}" where n represent the number of input bits for S-Box.

DNA Background

DNA (Deoxyribo Nucleic Acid). DNA is considered as the genetic drawing of living or existing creatures. All
individual body cells have a complete set of DNA. DNA is exceptional for every being. It is a polymer made out of
monomers named deoxyribo nucleotides. This nucleotide comprises three fundamental components

A single-strand of DNA is composed of a sequence of molecules named bases, which stick out from a sugar-
phosphate backbone, the bases are defined as four characters {A, C, G, and T} (Webster & Tavares, 1986, Zhang,
Cheng, & Tarn, 2006). One of the most basic features of the DNA strand sequence is that it is oriented; accordingly,
ACCT is distinct from TCCA. Typically the DNA strands exist as paired, reverse complementary words or strands:
The Watson-Crick Double helix, with its four letters, A, C, G and T paired via A" =T and C” = G. Corresponding
DNA codes could involve the insertion-deletion metric — with bounded similarity between two strands (Bell &
Torney, 1993).The reverse complement process is one of the popoular in DNA strands for example the reverse
complement of TTGCAC is equal to GTGCAA. The adjacent reverse complementary strands in reverse directions
produces the double strands (D'yachkov et al., 2003) .

Central dogma is one of the most important methods for biological molecules. It is includes some processes of
DNA, such as replication, transcription and translation, Figure 1.

3' - """"[n‘nJ
[iy
T l [L

Transcription

DMA (gene)

Entron Emn
Ly J.J
>< Splicing ﬂ ><
Exan Exon Exon

mRNA

Translation H
~

%‘imteing

FIGURE 1. CENTRAL DOGMA.

34 Auday H. Saeed Al-Wattar, Ramlan Mahmod, Zuriati Ahmad Zukarnain, Nur Izura Udzir

NIST Suite Randomness test

The NIST Test Suite is a statistical test suite for randomness by NIST employed to appraise the ciphers
(cryptographic algorithm). It includes 15 tests (Bassham III et al., 2010).

The NIST test suite is one of the security test tools that is used to evaluate the confusion and diffusion properties
for the new cipher, as conducted by (Soto & Bassham, 2000) and (Katos, 2005).The test judges whether the
production of the algorithms under convincing test conditions shows features that would suggest that the outputs
are generated randomly.

S-Box tests Criteria

There are a number of criteria that the S-Boxes should satisfy to be considered as being a good S-Box.

Balanced

If the S-Boxes have the same number of one’s and zeroes, it indicates that they are balanced, which is one of most
important features of an S-Box.

Completeness

The S-Boxes are complete if every output bit depends on all of the input bits (Webster & Tavares, 1986). The
function Y is considered complete if there is at least one pair of plaintext vectors (z and z;), such that:

(z and z;) are n bit vectors that vary in just one bit i, and, Y(z)and Y(z;) vary atleastinbith, forall{i,h:1<i,h <

nkh
Avalanche Criterion

A block cipher is considered to reveal the avalanche effect if for a single change in a single bit of the input, the
output varies drastically (Feistel, 1973; Feistel, Notz, & Smith, 1975; Webster & Tavares, 1986).

The avalanche value should be within the range [0, 1]. The ideal value for avalanche is 0.5, which indicates that the
S-Box satisfies the avalanche criterion. However, it is preferred to take the error interval {- €A,+ €A} into account
for the experimental results (Vergili & Yiicel, 2001).

The avalanche of the transformation function (S-Box) can be obtained by using the following equation (Ramanujam
& Karuppiah, 2011):

Number of flipped bits in (output)ciphertext

Avalanche Effect =
vatanehe e = Number of All bits in the (output)ciphertext

Strict Avalanche (SAC)

According to A. Webster and S. E. Tavares in (Webster & Tavares, 1986) the transformation function (S-Box)
satisfies the strict avalanche criterion if each bit of its output bits is changed by a probability of one half when a
single bit of its outputs is complemented. This criterion merges both the completeness and avalanche criteria.

Bit Independence (BIC)

Another criterion called Bit Independence (BIT) was declared by A. Webster and S. E. Tavares as one of the criteria
used to check the security of the designed S-Boxes.

For all u, v, 1€ (1,2,....m),such as v # 1, a functionf: {0,1}™ — {0,1}™ satisfies the bit independence criterion if
complementing input bit u makes the output bits v and 1 to alter independently.

Commonly the values of BIC range between 0 and 1 as:
1: means the worse state is completely dependent on the relation between v and 1 bits.

0: means the ideal state is completely independent in the relation between v and 1 bits

34

Generating A New S-Box Inspired by Biological DNA 35

Differential Uniformity
The differential Uniformity d(S) for a function S(x) is defined as (J. Cui, Huang, Zhong, Chang, & Yang, 2011):
8(8) = max |[{x|S(x) + S(x + @) = B| (D)
aEF,

pery
a+0

Where: S(x) = (51(%), ..., sy (%)) is a multiple output Boolean function from F7 — F3. The minimum value for d(S) =
1, and its value for AES S-Box= 4, the low value of differential uniformity means it is resistant to differential attack
(Gong, Tan, & Zhu).

The Proposed Method

According to the DNA base binary coding, every two bit is considered as one DNA base. Since a byte consists of
eight bits, so, each byte represents four bases, for example, 01101100 will be as CGTA.

The numbers 0,255 will deal with as DNA bases to treat them as a biological molecule performing a number of
processes, inspired from the real biological system. Therefore, those the numbers will be represented as in 1

i€{4,C,GT}Vi=1{0,..255})

The following steps stand for creating the proposed S-Box

First:

1) stepl

Split the numbers (0, 255) into 4 sets(w ,x ,y and z), where, every set represents a single DNA strand, and the
elements (bytes) of each set represent the DNA bases as each byte has 4 bases. These sets are named a, b, ¢, and d
respectively, each set is consisting of 256 bases, with different start initial value for each set. as follow:

(w) With initial value = i, (x) with initial value = i+f, (y) with initial value = i+fl, and, (z) with initial value =i+f2.
where i,ff1,2 are random values.

All of their values are increased by m, each iteration round as following: (suppose i=0,f=1,f1=2,f2=3 and m = 4)
a=jb=j+1c=j+2d=j+3Vj€{0255}: j=j+4,
so
a= (0,4 ..,252), b= (1,5,.,253), c =(2,6,..,254)
and d=(3,7,..,255).

The DNA bases are represented in binary as:
= Convert the bytes of sets to DNA base code (A, C,G, and T), using the coding :
((00=A), (01=C), (10=G), (11 =T)).
= Recode the byte of sets follows: ((A=10), (C=11), (G=01), (T=00))
2) Step2

Complete the DNA strands structure by Recombine these sets as the following order as some DNA strands
direction 3” to 5”, while the others are from 5” to 3”: into one set (Strand-All) as:

Strand-All = Forward (w) + Reverse (x) + Forward (y) + Reverse (z).
Forward (): The elements stay with same order.
Reverse (): Reverse the order of the element within the set.

The process of representing the DNA strands and bases digitally is illustrated in Figure 2.

second:

Performs the reverse complement process inspired by real DNA strands reverse complement,(Watson-Crick

36 Auday H. Saeed Al-Wattar, Ramlan Mahmod, Zuriati Ahmad Zukarnain, Nur Izura Udzir

complement), for byte level. The Watson Crick of a DNA strand is gained by converting each A to T, each C to G
and vice-versa and toggling the 3" and 5" ends of the strand as:

Let B be any byte B: B=b,bsb,b; , where b; € {A, C, G, T}, and 1<i<4,also
Vbi € {A, C, G, T} bi = XiZXil P and, XiZ'Xil € {O, l}

Complement of B is B¢ = b,bsb,b; , as ACTG & TGAC as AT, CoG, andb; =X;,X;; © by =XXj;, as
0011, 10201. 50, X45X41X32X31X2:X01X12X11 © X2 X1 X32X31 X5, X51X12X11

DNA reverse of Bis B as B’ =b,b;b,b;, and,

Reverse complement is B™ where B™ = b,b;b,b; = So, For B= bybsb,b; > X45X41X5,X51X22X21X12Xy1, B =
bybibiby > X5,X51X1,X11X42X41X3,X34

This action applied for all sets elements as shown in Figure 3.

INCCTN N NP N P P N N I B O 23 =

h he h, b,

IITH B

w X 3 A
[0I-:|-..|zszlll|5|...I253||2|6|...]254I|3I?I...Izssl b b b b;
¥ 4 Different DNA Strands A4 i Xg1 | K32 i K31 | K22 i Xaq | K12 i X114
[JoJoJoJoJ1Jo]Jo BT
— N » " 2
I DNA Bases Dy 0y 27 by
o | wr TS wr | r |
| a I a | c l a | 1122 i 1‘1?_1 1'112 i 1%-” 1’;42 i 1';41 1'132 i 1’-31
1—51'{1
Bl B! b, b,
T bl 8 e a
BO ARSI Reverse(x) Forward(y) Reverse (z) XL i x T x, Tx xLIxi, 1 xL,(x%,
[W ” X " = ” z | 22 § 21 12§ 11 22 1 a1 32§ 431

FIGURE 3. REVERSE-COMPLEMENT PROCESS

FIGURE 2. SIMULATE THE DNA STRANDS AND BASES STRUCTURE TO BE
(BYTE -LEVEL).

USED FOR S-BOX DESIGN.
Third:

To get an extra key for the new static S-Box, an XOR operation between the resulted DNA strands of second stage (
B™ of the bytes) and another segment of DNA is perrformed to double and strengthen the randomness of the
resulted S-Box. There are many ways to get this DNA strands such as employ a random DNA segment generated
by some random generator techniques or use a particular segment obtained from the one GenBank (Benson et al.,
2012).

Accordingly, the result of each number will be as follows:
Dh = B™ @ St ©)

where St; represent the segment,

Fourth:

Apply the central dogma process on the result set of numbers Dh;. The central dogma operation includes a number
of important processes: transcription, splicing, and translation besides the reverse transcription. The resulting
numbers from the previous steps can be defined as:

Dhi = dhydh, ...dh, wheren = 255

As the central dogma transcription process includes removing the Introns and keeping the Exon to get the RNA
sequence. By considering the set Dh contains both the Exon and the Intron, it could keep the Exon and remove the
Intron by separating the resulting set Dh set into two sets called Intron and Exton. In the real DNA strands the
number of Exon is more than the number of Exon, so, the separate process would be as:

Fori=1,n // where n is the whole Dh elements
Begin

36

Generating A New S-Box Inspired by Biological DNA 37

J=0; k=0;
If (j<m) where m= the length of Exon segment
Begin Intron [j]=Dh[1i];j=j+1 end

If (k<m/2)

Begin
Exon[k]=Dh [i]; k=k+1
End
End //

Finally, it gets the New DNA S-Box byperform the following two steps:
1) Reverse (Exon[])// Reverse the order of the Exon [| set
2) Merge (Reverse (Exon[]), Intron[]). // Merge the reverse of Exon[] set with the Intron[] set, as:
Y [] = Merge (Reverse (Exon|[1), Intron[]).

The results of the array Y will be the New-DNA-based S-Box, which is obtained by the inspiration of the DNA
processes.

All the above methods have a reverse according to the nature of DNA techniques, so the reverse can be calculated
using same operation, but in opposite order and with using the same random DNA segment which used for
encryption.

Methodology

Two types of experiments were conducted

1) Experiments measure the security of the AES algorithm that used the New -S-Box by using the
statistical NIST Suite Randomness test.
2) Experiments measure the security of the new -S-Box using S-Box test criteria.

The laboratory experiments were performed on the Windows Operating system. For the NIST Suite Randomness
test all the data for the 128-byte block of plain-text and 16-byte key was generated and evaluated off-line. The data
included a random plaintext with random 128 bit keys.

This works only deals with the situation where the block ciphers run in ECB mode, where the plaintext is divided
into blocks, and each block is encrypted separately using the same secret key.

The values of the key were based on generating random data, while the plaintext was different file types, image,
video and text. Many images, videos and text files were chosen. According to (Soto & Bassham, 2000), as a
minimum, 128 sequences with 1,000,000 bits for each sequence should be used for an NIST test suite. This paper
uses 128 sequences of length 1,044,096 bits per sequence in length, which were tested and plotted in the laboratory
experiments' action as a random plaintext with random keys of 128 bits.

The tested ciphertext for the experiments is the output of round (3) of the AES algorithm with DNA-based S-Box.

The entire randomness testing relied upon the use of the NIST Statistical Test Suite, which comprises 15 tests that,
under special factor, can be observed as 188 statistical tests (Katos, 2005).

The majority of the 15 tests have a one p-value; nevertheless, some of the tests have more than one p-value Table
(1). Every p-value matches to the function of a random statistical test on a distinct block, this block is a binary
sequence (Rukhin, Soto, Nechvatal, Smid, & Barker, 2001).

The significant level a used for analysis of its value = 0.01, as proposed by NIST, for the study of p-values gained
from a variety of statistical tests. Depending on the p-value the following states can be concluded:

= The sequence is shown to be completely non-random if a (p-value = 0).

* The sequence is shown to be non-random if a (p-value <0.01).

= The sequence is shown to be random if a (p-value >0.01).

38 Auday H. Saeed Al-Wattar, Ramlan Mahmod, Zuriati Ahmad Zukarnain, Nur Izura Udzir

= The sequence is shown to be perfect-random if a (p-value =1).

The proportion of sequences that passed a specific statistical test should lie above the proportion value p” described
in the following equation:

, - 3 x (1—-) @
b= + m
Where m = 128.
TABLE 1: BREAKDOWN OF 15 STATISTICAL TESTS APPLIED DURING EXPERIMENTATION
Test ID Number NIST Statistical Test Number of p-value
1 Frequency 1
2 Frequency-Within-Block 1
3 Runs 1
4 Longest Runs of Ones 1
5 Binary Matrix Rank 1
6 Discrete Fourier Transformation 1
7 Non-Over Lapping Template Matching 1
8 Overlapping Template Matching Test 1
9 Maurer’s Universal Statistical 1
10 Linear Complexity 1
11-12 Serial 2
13 Approximating Entropy 1
14-15 Cumulative Sums (Cusums) 2
16-23 Random Excursions 8
24-41 Random Excursions Variant 18
1 r 1 + + »
0.9 L 3 * * * . * 0.9 * . * &
Soo o *. LA AR
08 e ——9o & *> + * 6.8 * * ME 34 v+
07 | b * * . 07 PAPY . LAMPORIN
‘ ** oo’ o ! M hd
. 0.6 - * A * o 06 * ¢ ’.’—‘—’—0‘1—.‘—‘
3 o5 A L J L 2 3 0.5 & * & ’ * * .J_
8 U0 T @ et e e ., 3 + . * o
= » 3 * & & b4 0.4 - L IVRE X * . . &
4 04 3 3 * * a . T. e » hNE A $
»* hd .o - . 0.3 * S DAY S 2
03 1 ¢ o o * ", PR SR L) *" .
* & . ,ﬁ.#’_’é_’i
0.2 * ”—‘—'—.—.—t‘; . * + +
1 | € et et hd * 0l 4% ** o0 *
‘ AOQ. I 001 G —————————— 001
0 —*t— T . 4 T T T i T T T .
6 10 20 30 40 S0 60 70 80 90 100 110 120 130 ¢ 10 20 30 40 50 @0 70 8¢ 90 100 110 120 130
Sequences
Sequences

FIGURE 5. P-VALUES OF FREQUENCY WITHIN BLOCK TEST AT

FIGURE 4. P-VALUES OF FREQUENCY TEST AT ROUND 3. ROUND 3.

Results and Discussion

The process of generating the new S-Box used less calculation and mathematical operations than that used in
generating the origin AES S-Box.

Randomness Test

This section assesses and analyses the randomness of the AES algorithm used New S-Box. A number of
experiments were performed using the NIST Test Suite randomness test function. It is concerned with proving the
success of the encryption algorithm that used the proposed S-Box by showing that this cipher has successfully
passed all 15 NIST Statistical Test Suite randomness tests for some chosen sequences.

According to (Doganaksoy, Ege, Kogak, & Sulak, 2010), The Frequency Test, Frequency Test Within Block and Run
Test are associated to SAC for examine randomness and avalanche effect for ciphertext .

The Frequency Test results of the block cipher for rounds 3 is illustrated in Figure 4. It was reported that 127 out of
128 sequences enrolled a p-value greater than 0.01, for round 3, which indicates that the block cipher passes the

38

Generating A New S-Box Inspired by Biological DNA 39

Frequency Test for round 3 with proportion of 0.992.

The Frequency Within Block Test results of DNAB block cipher for rounds 3 is illustrated in Figure 5. It was
reported that 126 out of 128 sequences enrolled a p-value greater than 0.01, for round 3, which indicates that the
block cipher passes the Frequency Test for round 3 with proportion of 0.984.

The Run Test results of DNAB block cipher for rounds 3 is illustrated in Figure 6. It was reported that 127 out of
128 sequences enrolled a p-value greater than 0.01, for round 3, which indicates that the block cipher passes the
Frequency Test for round 3 with proportion of 0.992.

In reference to Table 1 Random Excursion Test is a chain of eight tests and conclusions, single test and conclusion
for each of the states: -4,-3,-2,-1 and +1, +2, +3+4. Random Excursions Variant Test is a chain of eighteen tests and
conclusions, single test and conclusion for each of the states:-9,-8,...,-1 and +1,+2,... , +9. State +1 from Random
Excursions Test (test ID number = 20) and state -1 from Random Excursions Variant Test (test ID number =32) were
selected to register in this experiment. Figure 7 shows the p-values for 15 NIST at round 2 of the AES cipher used
the proposed S-Box.

From the test results above, the AES algorithm with New -S-Box has good randomness, which is considered as one
of the most important measures of the security of the block cipher algorithms. The high p-value of the frequency
test is a big indicator of the success of the proposed algorithm, especially when using multiple types of file of
different sizes.

: L *« %o L
. [
a9 %‘ . e "%..Q¢Q" 0.0 . *
08 . ’. - o 0.3 .
07 ¢ $ s+ 0.7
.
« i *. 3 *
IS PO PR SR M AT T4 . BT
g T PR v ¢ e L, W 2) v . R
a 04 r & * [0.4 . .
I MR RO i ., . ¢
* +
L o . N . ‘e 0.2 * *
A A T — R
09’..v ..’ " Un-.-n-n--....‘yvno'[)l
T 617234567 8% 9101112131415 2032
¢ 13 ¢ 32 40 50 60 70 80 30 100 110 120 130
ID number
Sequences
FIGURE 6. P-VALUES OF RUN TEST AT ROUND 3. FEGURE 7. P-VALUES OF STATISTICAL NIST TEST AT ROUND 3.
| R T Y
0.995
0gg e e *
c L ¢ e o o
U5 e ee # *
5
£ 098 .
80975 * *
g 097 T
0965 0.963616
0%
0 2 46 81012141618202224262830323436384042
ID number
FIGURE 8. RANDOMNESS TESTS RESULTS OF AES BLOCK CIPHER USING THE PROPOSED S-BOX AT ROUND 3.
Proportion

The proportion of the sequences that exceeded a particular statistical test must be greater than the proportion value
p . As defined in equation (4), the proportion value of these sequences is:

) _ J0.01(1 - 0.01)
p'=(1-001) -3 [—————" = 096361

Asm =128 and. « = 0.01

Figure 8 demonstrate the randomness test for 15 statistical tests for rounds 3 of AES block cipher that used the

40 Auday H. Saeed Al-Wattar, Ramlan Mahmod, Zuriati Ahmad Zukarnain, Nur Izura Udzir

proposed S-Box. From this figure, at the end of the third round, all of the 41 statistical tests fall over 96.36%, which
is evident that the output from the algorithm is completely random.

S-Box Test Criterion

Balanced

The new DNA-based S-Box, which is generated using the proposed method, is balanced since it has equal numbers
of both 0’s and 1’s.

Completeness

The new generated New -S-Box has the completeness criteria since each bit of the new S-Box is dependent on all of
the input bits. For the DNA-based S-Box, it is clear that if there is at least one pair of 8-bit input vectors, Z and Zi
that are differ in only one bit (i), then the output f(z) and f(zi) are differ at least in bit j.

Avalanche

A number of DNA-based S-Boxes were tested to get their avalanche values. The experiments show that the
avalanche values of the new S-Boxes range between 0.4694 and 0.51. For example the avalanche value for the new
S-Boxis (0.5).

Strict Avalanche (SAC:

The Strict Avalanche criterion for the New -5-Box is 127. The values of strict avalanche for the S-Boxes generated by
the proposed algorithms are ranging between 123 and 129.

Bit Independence:

The experiments show that the bit independence value for the new new S-Box does not exceed 0.07. The bit
independence value of the New -S-Box= 0.03.

Differential Uniformity

The experiments result shows that differential uniformity of the new S-Boxes is range between (4 and 5). The
resistance against differential cryptanalysis is measured by the Differential Uniformity, which indicates that the
new S-Boxes generated by the proposed method are resistant against differential attacks(J. Cui, et al., 2011).

The results of the NIST suite randomness test besides the S-Box criteria tests prove that the new DNA based S-
Boxes have a strong security since they are bijective, balanced and complete; furthermore, they have perfect
avalanche, strict avalanche, good independence and low differential uniformity. Based on all of the foregoing
reasons, and supported by the simple processes used in the generation of these S-Boxes it can be deduced that this
technique is successful.

Conclusions

This paper proposed a new method to generate new S-Boxes inspired by real biological techniques, specifically
DNA. The proposed method tried to take advantage of the DNA properties in generating a new S-Box that satisfies
the security criterion with simple mathematical operations. It proves that real biology techniques could be used as
the inspiration to build the main components used in the encryption algorithms like the S-Box, since the
mechanism of these techniques has different concepts from traditional methods. The generated S-Box can be used
within SPN symmetric block cipher as AES cipher. The data used for testing the proposed algorithm were Image,
Video, Text, and BBS, which are considered as being among the most difficult and important data types in terms of
encryption. The new S-Boxes were tested using the NIST test Suite and the S-Box test criteria. The results of the
experiments and tests show that both the new S-Box and the cipher used have strong security. For future work,
some modifications could be made for the proposed generating method to build a dynamic DNA-based S-Box, in
which the whole cipher completely depends on or is inspired by DNA techniques. Finally, this work opens the
door wide to capitalize on the numerous features available in DNA and adopting them within the encryption field.

40

Generating A New S-Box Inspired by Biological DNA 41

REFERENCES

(1]

(2]

(3]

(4]

[3]

(6]
[7]

(8]
9]

(10]

(1]

(12]

(13]

(14]

[13]
[16]

(17]

(18]

(19]

[20]
[21]

(22]

(23]
[24]

Adams, C., & Tavares, S. (1990). Good S-Boxes are easy to find. Paper presented at the Advances in Cryptology —CRYPTO’89
Proceedings.

Amin, S. T., Saeb, M., & El-Gindi, S. (2006). A DNA-based Implementation of YAEA Encryption Algorithm. Paper presented at
the IASTED International Conference on Computational Intelligence, San Francisco.

Bassham III, L. E., Rukhin, A. L., Soto, J., Nechvatal, J. R., Smid, M. E., Barker, E. B., et al. (2010). SP 800-22 Rev. la. A
Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.

Bell, G. I, & Torney, D. C. (1993). Repetitive DNA sequences: some considerations for simple sequence repeats. Computers
& chemistry, 17(2), 185-190.

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell,], et al. (2012). GenBank. Nucleic acids
research, gks1195.

Braeken, A. (2006). Cryptographic properties of Boolean functions and S-Boxes. phd thesis-2006.

Canright, D., & Batina, L. (2008). A very compact “perfectly masked” S-Box for AES. Paper presented at the Applied
Cryptography and Network Security.

Chen, G. (2008). A novel heuristic method for obtaining< i> S</i>-boxes. Chaos, Solitons & Fractals, 36(4), 1028-1036.

Clark, J. A., Jacob, J. L., & Stepney, S. (2005). The design of S-Boxes by simulated annealing. New Generation Computing,
23(3), 219-231.

Cui, G, Qin, L., Wang, Y., & Zhang, X. (2008). An encryption scheme using DNA technology. Paper presented at the Bio-
Inspired Computing: Theories and Applications, 2008. BICTA 2008. 3rd International Conference on.

Cui, J., Huang, L., Zhong, H., Chang, C.,, & Yang, W. (2011). An improved AES S-Box and its performance analysis.
International Journal of Innovative Computing, Information and Control, 7(5).

D'yachkov, A. G., Erdés, P. L., Macula, A.], Rykov, V. V., Torney, D. C.,, Tung, C.-S,, et al. (2003). Exordium for DNA
codes. Journal of Combinatorial Optimization, 7(4), 369-379.

Detombe, J., & Tavares, S. (1993). Constructing large cryptographically strong S-Boxes. Paper presented at the Advances in
Cryptology —AUSCRYPT'92.

Doganaksoy, A., Ege, B., Kogak, O., & Sulak, F. (2010). Cryptographic Randomness Testing of Block Ciphers and Hash
Functions. IACR Cryptology ePrint Archive, 2010, 564.

Feistel, H. (1973). Cryptography and computer privacy. Scientific american, 228, 15-23.

Feistel, H. Notz, W. A, & Smith, J. L. (1975). Some cryptographic techniques for machine-to-machine data
communications. Proceedings of the IEEE, 63(11), 1545-1554.

Gehani, A., LaBean, T., & Reif, J. (1999). DNA-based cryptography. Paper presented at the 5th DIMACS workshop on DNA
Based Computers, MIT.

Gong, G., Tan, Y., & Zhu, B. Enhanced Criteria on Differential Uniformity and Nonlinearity of Cryptographically
Significant Functions.

Kartalopoulos, S. V. (2005). DNA-inspired cryptographic method in optical communications, authentication and data mimicking.
Paper presented at the Military Communications Conference, 2005. MILCOM 2005. IEEE.

Katos, V. (2005). A randomness test for block ciphers. Applied mathematics and computation, 162(1), 29-35.

Kazlauskas, K., & Kazlauskas,]. (2009). Key-dependent S-Box generation in AES block cipher system. Informatica, 20(1), 23-
34.

Leander, G., & Poschmann, A. (2007). On the Classification of 4 Bit S-Boxes Arithmetic of Finite Fields (pp. 159-176):
Springer.

Leier, A., Richter, C., Banzhaf, W., & Rauhe, H. (2000). Cryptography with DNA binary strands. BioSystems, 57(1), 13-22.
Ning, K. (2009). A pseudo DNA cryptography method. arXiv preprint arXiv:0903.2693.

42

[25]
[26]

[27]

(28]

[29]

(30]
(31]

(32]

(33]

[34]

(35]

(36]

42

Auday H. Saeed Al-Wattar, Ramlan Mahmod, Zuriati Ahmad Zukarnain, Nur Izura Udzir

Ramanujam, S., & Karuppiah, M. (2011). Designing an algorithm with high avalanche effect. [JCSNS, 11(1), 106.

Rukhin, A., Soto, J., Nechvatal, J., Smid, M., & Barker, E. (2001). A statistical test suite for random and pseudorandom number
generators for cryptographic applications: DTIC Document.

Sabry, M., Hashem, M., & Nazmy, T. (2012). Three Reversible Data Encoding Algorithms based on DNA and Amino
Acids' Structure. International Journal of Computer Applications, 54(8).

Sadeg, S., Gougache, M., Mansouri, N., & Drias, H. (2010). An encryption algorithm inspired from DNA. Paper presented at
the Machine and Web Intelligence (ICMWI), 2010 International Conference on.

Singh, H., Chugh, K., Dhaka, H., & Verma, A. (2010). DNA based Cryptography: an Approach to Secure Mobile Networks.
International Journal of Computer Applications, 1(19).

Soto, J., & Bassham, L. (2000). Randomness testing of the advanced encryption standard finalist candidates: DTIC Document.
Tang, G., Liao, X., & Chen, Y. (2005). A novel method for designing S-Boxes based on chaotic maps. Chaos, Solitons &
Fractals, 23(2), 413-419.

Tornea, O., & Borda, M. (2009). DNA Cryptographic Algorithms. Paper presented at the International Conference on
Advancements of Medicine and Health Care through Technology.

Tran, M. T., Bui, D. K., & Duong, A. D. (2008). Gray S-Box for advanced encryption standard. Paper presented at the
Computational Intelligence and Security, 2008. CIS'08. International Conference on.

Vergili, 1., & Yiicel, M. (2001). Avalanche and Bit Independence Properties for the Ensembles of Randomly Chosenx S-
Boxes. Turk] Elec Engin, 9(2), 137-145.

Webster, A., & Tavares, S. E. (1986). On the design of S-Boxes. Paper presented at the Advances in Cryptology —CRYPTO’85
Proceedings.

Zhang, M., Cheng, M. X,, & Tarn, T.-J. (2006). A mathematical formulation of DNA computation. NanoBioscience, IEEE
Transactions on, 5(1), 32-40.

	1257-1430-1-PB
	1258-1431-1-PB
	1259-1432-1-PB
	1260-1433-1-PB

