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Abstract 

In the present study, post buckling and nonlinear free vibration response of laminated composite plate resting on a two 

parameters Pasternak foundation with Winkler cubic nonlinearity having uncertain system properties in thermal environments 

using macro mechanical stochastic finite element model is investigated. The system properties are modeled as basic random 

variables using macro mechanical model. A C0 nonlinear finite element formulation of the random problem based on higher 

order shear deformation theory in the von-Karman sense is presented. A direct iterative method conjunction with a stochastic 

nonlinear finite element method is extended to analyze the effects of uncertainties in the system properties on the post buckling 

and nonlinear free vibration of the composite plate having Winkler type of geometric nonlinearity. Mean and standard 

deviation of the response have been obtained for various combinations material properties, geometric parameters, boundary 

conditions, elastic foundation parameters, aspect ratio, lamina layup compared with those available in the literature and with 

Monte Carlo Simulation.  
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Introduction 

There are numerous investigations available which dealt with the post buckling response of laminated composite 

plates using deterministic and other methods. All the methods used in available literature found the mean 

response and neglected the coefficients of variations due to randomness in material properties, geometric 

imperfections, coefficients of thermal expansion and foundation parameters. To enhance the accuracy in the 

response evaluation a probabilistic analysis favors for composite laminated for the accountability of randomness 

by modeling their system properties as random variables. 

Considerable literature is available on  the buckling or post buckling of laminated composite plates in thermal 

environments based on deterministic analysis and  using either classical theory of plates, first order shear 

deformation theory or higher order shear deformation theory subjected to uniform or non uniform temperature 

distribution with temperature dependent and  independent material properties. Chen & Chen [1989], Huang et 

al.[1988], Chen & Chen [1991], Shen [2001], Sita et al.[2003], Shariyat [2007], Pandey et al. [2009], Nigam and 

Narayana [1994], Handa and Anderson [1981], Nakagiri [1990]. Lin and Kam [1992],  Englested and Reddy [1994], 

Zhang and Ellingwood [1995], Graham and Siragy [2001], Singh et al. [2001].  The post buckling analysis of 

laminated composite plates resting on elastic foundation with random system properties using C0 FEM in 

conjunction with FOPT based on HSDT has been studied by Singh et al. [2002].  Generalized buckling analysis of 

laminated plates with random material properties using Stochastic Finite Elements have been investigated by  
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Ankara et al.[2006]. The random field finite elements have been studied by Liu.[1986]. The post buckling response 

of laminated composite plate resting on elastic foundation with random system properties, stochastic perturbation 

finite elements have been investigated by Yamin et al. [1996]. 

Considerable literature is also available on the prediction of the nonlinear free vibration analysis of conventional 

structures and composite structures in thermal environment based on deterministic analysis Liu and Liu [1996]. 

Bailey [1981]. Tauchert [1991].  Chang and Jen  Lee and Lee  [1986]. 

However, the literature related to the stochastic analysis of laminated composite plates is limited. Thomsion [1969] , 

Leissa and Martin [1990] , Zhang and Chen [1990] , Zhang and Ellingwood [1993] , Zhang et al. [1996] have 

investigated the stochastic perturbation method to vector-valued and matrix-valued function for response and 

reliability of uncertain structures,  Manohar and Ibrahim [1999] , Salim et al.[1998] ,Venini and Mariani [2002] , 

Yadav and Verma [2001] , Singh et al.[2001, 2003] have analyzed the composite cross-ply laminated composite 

plate/panel with random material properties for free vibration employing higher order deformation theory (HSDT) 

with FOPT.  Onkar and Yadav [2004] , Kitiponarchai [2006] , Tripathi [2007] investigated the free vibration 

response of laminated composite conical shells with random material properties using FEM in conjunction with 

FOPT based on HSDT. Singh et al. [2010] investigated the Stochastic analysis of laminated composite plates on 

elastic foundations: The cases of postbuckling behavior and nonlinear free vibration. 

It is evident from the existing literatures that very little efforts have been made for the studies on post buckling 

response of laminated composite plates with temperature independent (TID) and temperature dependent (TD) 

thermoelastic material properties, thermal expansion coefficients, foundation parameters and nonlinear free 

vibration response of laminated composite plates with random system properties in thermal environments to the 

best of authors’ knowledge. 

In present paper post buckling and nonlinear free vibration response of laminated composite plate resting on a two 

parameters Pasternak foundation with Winkler cubic nonlinearity having uncertain system properties in thermal 

environments using macro and micromechanical stochastic finite element model is investigated. 

Mathematical Formulations 

Consider a rectangular laminated composite plate of length a, width b and total thickness h, defined in (X, Y, Z) 

system with x- and -y axes located in the middle plane and its origin placed at the corner of the plate. Let  , ,u v w  

be the displacement parallel to the (X, Y, and Z) respectively as shown in Fig 1. The thickness coordinate Z of the 

top and bottom surfaces of any kth layer are denoted by Z(k-1) and Z(k) respectively. The fiber of the kth layer is 

oriented with angle θk to the X- axes.  The plate is supported by the foundation excluding any separation during 

the process of deformation as shown in Fig. 1. The load displacement relation between the plate and the supporting 

foundation follows the two- parameters model (Pasternak-type) as 

2

1 2P K w K w    

with 2 2

2 , ,
x y

                 (1) 

 

 

 

 

 

 

 

FIGURE 1. GEOMETRY OF LAMINATED COMPOSITE PLATE WITHOUT FOUNDATION AND RESTING ON ELASTIC FOUNDATION 
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where P is the foundation reaction per unit area, comma (,) denotes partial differential. and   is Laplace 

differential operator; K1 and K2 are normal and shear stiffness of the foundation, respectively. This model is simply 

known as Winkler type when K2 = 0 .Yamin [1996]. 

Displacement Field Model 

In the present study the Reddy’s higher order shear deformation theory has been employed *1984+, Shankara et 

al.[1996] .The modified displacement field along the  x, y, and z directions for an arbitrary composite laminated 

plate is now written as  

Strain Displacement Relations 

The strain-displacements relations with von Karman type geometric nonlinear elasticity are expressed asChia[1980].   

 Stress–Strain Relation 

The constitutive relationship between stress resultants and corresponding strains of laminated composite plate 

accounting for thermal effect can be written as Reddy[1996],Franklin[1968], and Jones [1975]. 
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where  
k

Q ,  
k

 and  
k

  are transformed stiffness matrix, stress and strain vectors of the kth lamina, 

respectively and αx, αy, αxy are the thermal expansion coefficients along x, y, z, direction, respectively which can be 

obtained from the  thermal coefficients in the longitudinal (αl,) and transverse (αt) directions of the fibers using 

transformation matrix. T (X, Y, Z) is the uniform temperature field distribution. 

Rrelationship between stress resultants and mid-plane strain are 
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where the stress resultants per unit length  
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For the post buckling problem it is assumed that the temperature field exhibit the linear variation through the plate 

thickness (T. T) 
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z
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                   (5)                                                             

For the plate subjected with uniform temperature rise (U.T) 

  , , 0T X Y Z T             (6)                         

 Strain Energy of the Plate 

The strain energy of the plate is given by      
1
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U dV   ,           

Strain energy U can be rewritten as 

l nlU U U            (7)                                

Where Ul and Unl are the linear and nonlinear part of the strain energy, respectively which can be expressed as     
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Nonlinear Part of the Strain Energy of the Plate 

Using nonlinear strain-displacement relations in the von Karman sense Liu et al.[1986] the nonlinear part of energy 

as given above can be expressed as                
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Strain Energy Due to Elastic Foundation 

The potential energy (2) for nonlinear elastic foundation having shear deformable layers can be written as 
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Potential Energy Due to Thermal Stresses  

The potential energy (3) due to applied in-plane thermal forces in producing is written a 
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where, Nx, Ny and  Nxy are in plane applied thermal loads along x, y and z axis. 
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Kinetic Energy of the Laminate.   

The .kinetic energy (T) of the vibrating laminated plate can be expressed as  

      
. .

垐
1

2

T

k

V
u u dVT   ,            (12) 

where   and    
. . . .

ˆ
T

u u v w are the density and velocity vector of the plate respectively. 

Finite Element Model 

In the finite element method the domain is discretized in to a set of finite elements. Over each of the elements, the 

displacement vector and element geometry are represented as 
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where i  is the interpolation (shape function) function for the ith node,  
i

 is the vector of unknown 

displacements for the ith node, NN is the number of nodes per element and xi and yi are Cartesian Coordinate of 

the ith node. 

Strain Energy of the Laminated Plate  

The linear and the nonlinear functional are computed for each element and then summed over all the elements in 

the domain to get the total functional. Following this 
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with      l b sK K K   

where global bending stiffness matrix [Kb], shear stiffness matrix[Ks], global nonlinear stiffness matrix [Knl], global 

displacement vector {q}and thermal load vector [F] are defined in appendix. 

Strain Energy Due to Elastic Foundation  

Using finite element notation after summed over all the element can be written as:     
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here, 
 e

flK    and 
 e

fnlK    are the elemental linear and nonlinear foundation stiffness matrices respectively. 

Thermal Post Buckling Analysis 

Using finite element model Equation can also be written as 
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Were,   and gK 
 

(e) represent the thermal buckling load parameter and the elemental geometric stiffness matrix, 

for the eth element respectively. 

Kinetic Energy of Laminate Plate 

Using Eq. (16) and Eq. (15) can also be written as 
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where [M](e) is consistent inertia matrix of eth element.   

Adopting Gauss quadrature integration numerical rule, the elemental  linear, non-linear, foundation stiffness 

matrices and geometric stiffness matrix respectively can be obtained by transforming expression in Cartesian x, y 

coordinate system to natural coordinate system , . 

Governing Equations 

The governing equation for thermal buckling and thermal nonlinear free vibration plate analysis can be derived 

using the Lagrange’s equation of motion Reddy *1984+ in terms of global matrices. This gives   

 [ ]{ } [ ] 0M Ks Kg                      (19)                                                                                                                                   

The above equation can be expressed in the form of nonlinear generalized eigen value problem for both thermal 

post buckling and thermal nonlinear free vibration as   
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here  {q},[Kl], [Kg] , [Knl],  [Kf],  [Kfnl], [M],  
1 and  

2  = ω2 are defined as the global displacement vector, the global 

linear stiffness matrix, the global geometric stiffness matrix, global nonlinear stiffness matrix, global foundation 

stiffness matrix, the global nonlinear foundation stiffness matrix, the global mass matrix, the thermal post buckling 

parameter and thermal nonlinear natural frequency parameter respectively. Since the matrix [K] is random in 

nature involving the uncertain material properties and foundation stiffness parameters, the thermal post buckling 

load parameters, nonlinear natural frequency parameter and their displacement vector also become random. 

Therefore the eigen values and eigenvectors also become random.  The Eq. (20) can be solved with the help 

probabilistic DISFEM combined in conjunction with perturbation technique or Monte Carlo simulation (MCS) to 

compute the mean and variance of the thermal post buckling temperature. 

Solution Approach- a DISFEM for Thermal Post-buckling and Thermal Nonlinear Free Vibration Problem 

A DISFEM approach has been adopted for obtaining the second order statistics of dimensionless thermal nonlinear 

fundamental frequency and thermal post-buckling response of laminated composite plate resting on elastic 
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foundation with randomness in material properties and foundation parameters. The material properties and 

foundation parameters are assumed to be basic input random variables. Without any loss of generality, the random 

variable can be spite up as the sum of a mean and a zero random part Singh et al.[2002].In general a random 

variable can be represented as the sum of its mean and zero mean random variable, denoted by superscripts ‘d’ 

and ‘r’, respectively. 

1 1 1 2 2 2; ,d r d r

i i i i

d r
i iK K K                          (22) 

 and  

d r
i i iq q q                    (23)        

where  
22

2 2

2

, 2 r r

i i ii
d d d

i i
       , i= 1,2….,p. The parameter p indicates the size of eigen problem.                                                   

Consider a class of problems where the random variation is very small as compared to the mean part of material 

properties. Further it is quite logical to assume that the coefficient of variation in the derived quantities like 

λr,ωr,qr and Kr are also small as compared to mean values. 

By substituting Eq. (22) in Eq. (20) and expanding the random parts in Taylor’s series keeping the first order terms 

and neglecting the second and higher order terms, same order of the magnitude term, one obtains as  

For thermal nonlinear free vibration and thermal post buckling analysis Klieber et al.[1992] 

Zeroth order: 

     2 1
d d d d d d

i i ii i
M KgK q q q   

 
                                              (24)                                                                                                                                           

First order:  

    
1

2 2) ( )( rd d r r

i

d r d
i i i i iM Kg K M KgK q q        

 
                        (25)                                                                                                                

Eq. (23) is the deterministic equations relating to the mean eigen values and corresponding mean eigenvectors, 

which can be determined by conventional eigen solution procedures. Eq. (24) the first order perturbation approach 

is employed in the present study singh et al.[2001,2002]. 

Using this Eq. (24) can be decoupled and the expression for 
1

r

i
 and 

2i

r  separately for thermal post buckling and 

thermal nonlinear free vibration are obtained. 

The FEM in conjunction with first order perturbation has been found to be accurate and efficient Klieber et al.[1992]. 

According to this method, the random variables are expressed by Taylor’s series. Keeping the first order terms and 

neglecting the second and higher-order terms Eq. (22) can be expressed as because, the first order is sufficient to 

yield results with desired accuracy for problems with low variability. 

 , ,
1 1 1

; ; ;,d d d

i j j i j j j i

q p q
r r r r r r

i i
j j j

b q q b K K b 
  

                        (26)    

Using the above and decoupled equations, the expressions for 1 ,

d

i j  and 2 ,

d

i j  are obtained. Using Eq. (25) the 

variances of the eigen values can now be expressed as : 

     1 , 1 ,1
1 1

,d d

i j i k

p p
r r

ji k
j k

Var Cov b b  
 

                 (27)                                          

     2 , 2 ,2
1 1

,d d

i j i k

p p
r r

ji k
j k

Var Cov b b  
 

                        (28)                                                                                                                                             
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where  ,r r
j k

Cov b b  is the cross variance between r
jb and r

k
b .The standard deviation (SD) is obtained by the 

square root of the variance Zhang et al.[1991].  

Results and Discussions 

In present work a program in mat lab has been developed to find out Second-order statistics of the thermal post 

buckling temperature for laminated composite plates subjected to uniform temperature distribution with 

temperature independent thermo-elastic properties. Amplitude ratios, boundary conditions, plate thickness ratios 

and aspect ratios are varied for detailed analysis. A nine noded Lagrange isoparamatric element with 63 DOFs per 

element for the present HSDT model has been used for discretizing the laminate and (4 × 4) mesh has been used 

throughout the study. Unless otherwise mentioned all the results reported in this paper have been obtained 

employing the full integration (3 × 3) rule .The coding has been done in MATLAB.  The mean and standard 

deviation of the thermal post buckling temperature are obtained considering the random material input variables, 

thermal expansion coefficients and lamina plate thickness taking combined as well as separately as basic random 

variables (RVs) as stated earlier. However, the results are only presented taking SD/mean of the system property 

equal to 0.10 Liu et al. [1986] as the nature of the SD (Standard deviation) variation is linear and passing through 

the origin. Hence, the presented results would be sufficient to extrapolate the results for other SD/mean value 

keeping in mind the limitation of FOPT Liu et al. [1986]. The basic random variables such as E1, E2, G12, G13, G23, 

υ12, α1, α2 and k1, k2 are sequenced and defined as  

1 11 2 22 3 12 4 13 5 23 6 12 7 1 8 2 9 1 10 10, , , , , , , , ,b E b E b G b G b G b b b b k b k              

The following dimensionless thermal post buckling load, foundation parameters has been used in this study.     

1000cr cr oT T   ; 
4 2

1 1 11 2 2 11/ ; /k K D a k K D a  ; Where cr, α0, T, k1 and k2 are the dimensional mean thermal buckling 

load, the initial thermal expansion coefficient and the initial guessed temperature, Dimensionless Winkler and 

Pasternak foundation parameters, respectively. 

The dimensionless nonlinear thermal free vibration 2

22( / ) /da E h   ,  
2

T cr oT b h   , Frequency ratio = nl/l. 

has been use for analysis.  The following material properties are used for computation for thermal nonlinear free 

vibration. 

11 22 12 13 22 23 22 1240 ,  0.6 ,  0.5 ,  0.25, 1.d d d d d d d dE E G G E G E         
-6 0 -1 -6 0 -1 -6 0 -1 9

1 2 0 221.14*10  C , 11.4*10  C , 1*10  C ,  6.92*10 .d d d dE Pa       

The plate geometry used is characterized by aspect ratios (a/b) = 1 and 1.5, side to thickness ratios (a/h) = 10, 20 

In the present study various combination of edge support conditions namely clamped (C) and simply supported (S) 

have been used for the investigation. For example, CSCS means clamped edges at x = 0, a while simply supported 

at edges at y = 0 and b. The boundary conditions for the plate are Fig. [2]. 

All edges simply supported (S1): 

0, 0, ; 0 0,y y x xu w at x a v w at y b             ; 

All edges simply supported (S2): 

0, 0, ; 0 0,y y x xv w at x a u w at y b            
; 

All edges clamped (CCCC): 

0, 0, 0, ;x y x yu v w at x a and y b           
 

Two opposite edges clamped and other two simply supported (CSCS): 

0,

0 0;

x y x yu v w

at x and y

         

 

0,

0,

y y

x x

v w at x a

u w at y b

 

 

    

    
; 

For thermal post buckling with foundation parameters the plate geometry used is characterized by aspect ratios 

(a/b) = 1and 2, side to thickness ratios (a/h) = 20, 30, 40, 50 and 100. The following mean values of the material 
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constants and thermal expansion coefficients are used for computation. We consider now a second steps as the 

elastic constants and thermal expansion coefficients of each layers are assumed to be linear function of temperature. 

The only exception is the Poisson’s ratio, which can reasonably be assumed as constant due to weakly dependency 

on temperature change Shen [2001].    

               

           

1 1 1 1

11 10 11 22 20 21 12 120 121 13 130 131

1 1 1

23 230 231 1 10 11 2 20 21

1 , 1 1 , 1

1 , 1 , 1

E T E E T E T E E T G T G G T G T G G T

G T G G T T T T T     

       

     
  

and    

 

1 3

10 20 120 20 130 20 230 20 12 10 1 20 1 11

1 1 1 1 3 1 1 3

21 121 131 231 11 21

40, 0.5 0.2, 0.25, 1, 10, 0.5 10

0.2 10 , 0.5 10

E E G E G E G E E

E G G G

    

 



 

         

        
 

All layers are of equal thickness. For the temperature independent material properties (TID) 1 1

11 21, ,E E  
1

121,G 1 1 1

131 231 11, ,G G   and 1

21 quantities are equal to zero. 

The material properties of the laminated composite plate for Table (3) are given in Pandey et al.[2009]. E1/E2 =25; 

G12=0.5E2; G23=0.2E2; E20=1*1e5; v12=0.25; E10=m1*E20; G120=m2*E20; G130=G120; G230=m3*E20; v21=v12*E20/E10; α110 =1*1e-6; 

α210 =10.0*1e-6; α12 = 0 ; αo =1e-6;  The non dimensionalised foundation parameters are as; K1= k1*D11 / a4, K2= k2*D11  / 

a2, K3= k3*D11 / a4*h2. 

 
FIGURE 2.SCHEMATIC OF VARIOUS BOUNDARY CONDITIONS FOR THE PLATE 

Validation Results for Mean Dimensionless Thermal Post Buckling Load 

The present deterministic FEM results are compared and validated with the results available in the literature. The 

dimensionless critical buckling temperature of simply supported (S2) angle-ply (±450)2T square laminated 

composite plate resting on Winkler and Pasternak elastic foundations with various amplitude ratios, subjected to 

uniform constant temperature (U.T)  is presented in Table (1) and compared with that of Shen [2001].   It can be 

seen that the present results are in good agreement. The difference from present results is due to semi analytical 

X 

Y 

Y 

X X 

SSSS 

CCCC CSCS 

 

 

0,
x x

u w       

0,
y y

v w       

 

 

0,
y y

v w       

 

a 

b b 

a 

0,
x x

u w       

b 

a 

Y 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
x x

u w       

0,
y y

v w       
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approach used in Shen [2001].    

TABLE 1 COMPARISON OF THERMAL POST BUCKLING LOADS OF ANGLE-PLY (±450)2T SQUARE LAMINATED COMPOSITE PLATE RESTING ON WINKLER 

(K1=2, K2=0) AND PASTERNAK (K1=2, K2=0.5) ELASTIC FOUNDATIONS FOR DIFFERENT AMPLITUDE RATIOS (WMAX/H) SUBJECTED TO UNIFORM 

CONSTANT TEMPERATURE (U.T) DISTRIBUTION AND IN-PLANE BI-AXIAL COMPRESSION. PLATE THICKNESS RATIO A/H=30 WITH SIMPLY SUPPORTED S2 

BOUNDARY CONDITIONS. (TID) AND (TD) ARE TEMPERATURE INDEPENDENT & TEMPERATURE DEPENDENT MATERIAL PROPERTIES RESPECTIVELY. 

Wmax/h 

k1=2, k2=0 k1=2, k2=0.5 

(TID) (TD) (TID) (TD) 

Present 

[HSDT] 
Shen [2001] 

Present 

[HSDT] 
Shen [2001] 

Present 

[HSDT] 
Shen [2001] 

Present 

[HSDT] 
Shen [2001] 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.4141 

1.4255 

1.4578 

1.5057 

1.5672 

1.6294 

1.3675 

1.3846 

1.4188 

1.4700 

1.5720 

1.6580 

0.9206 

0.9280 

0.9490 

0.9811 

1.0229 

1.0705 

0.8880 

0.8970 

0.9230 

0.9570 

0.9910 

1.0250 

1.5547 

1.5661 

1.5984 

1.6463 

1.7078 

1.7700 

1.5200 

1.5384 

1.5726 

1.6230 

1.7260 

1.8110 

1.0073 

1.0147 

1.0358 

1.0679 

1.1096 

1.1573 

0.9570 

0.9740 

0.9910 

1.0250 

1.0427 

1.0760 

In the first sets of example, the dimensionless critical buckling temperature of simply supported isotropic plate 

with various aspect ratios subjected to uniform temperature distribution is presented in Table (2) and compared 

with the result available in Sita [2003],Chen et al. [1991] and Boley [1960]. It can be seen that the present results are 

in good agreement.  

TABLE 2 COMPARISON OF CRITICAL BUCKLING TEMPERATURE PARAMETERS (
 

2

crl cr oT T a h  
) FOR THE SIMPLY SUPPORTED (S1) THIN 

LAMINATED COMPOSITE ISOTROPIC PLATE. PLATE THICKNESS RATIO (A/H=100), ASPECT RATIOS (A/B)  AND MATERIAL PROPERTIES (=0.30, 

E11/E22=1.00, Α =1.0X10-6). 

a/b 
 

2

crl cr oT T a h    

Chen[1991] Sita et al.[2003] Boley[1960] Present [HSDT] 

0.25 

0.50 

1.00 

0.691 

0.814 

1.319 

0.672 

0.791 

1.265 

0.686 

0.808 

1.283 

0.690 

0.805 

1.306 

The parametric studies results for aspect ratio a/b=1, thickness ratios b/h=10, simply supported SSSS S2, angle ply 

(±450)2T laminated composite plate with foundation parameters k1=50, k2=10 and k3=100, rise in temperature (T1) 

=100, (dimensionless critical temperature Tcr = T1* α0*1000) with biaxial compression is presented in Table (3) and 

compared with the analytical results of Pandey et al. [2009]. 

TABLE 3 COMPARISON OF PARAMETRIC STUDIES RESULTS FOR ASPECT RATIO (A/B=1), PLATE THICKNESS RATIO (A/H=10),  AMPLITUDE RATIOS 

(WMAX/H), SIMPLE SUPPORT SSSS S2, ANGLE PLY (±450)2T LAMINATED COMPOSITE PLATE RESTING ON NONLINEAR ELASTIC FOUNDATIONS (K1=50, 

K2=10 AND K3=100). TEMPERATURE (T1=100K), DIMENSIONLESS CRITICAL TEMPERATURE (TCR = T1* Α0*1000) WITH BIAXIAL COMPRESSION. 

Wmax/h Pandey et al.[2009] Present [HSDT] 

0.0 9.850 9.9812 

0.2 10.076 10.1572 

0.4 10.998 11.550 

0.6 12.282 11.8981 

Validation Results for Mean Thermal Frequency 

The present finite element formulation  for  dimensionless nonlinear vibration analysis of cross-ply [00/900]S 

laminated composite square plate with various amplitude ratios , uniform thermal loading condition and all edges 

simply supported is shown in Table (4). The result is compared with the results of Liu and Huang [1996]. Clearly, it 

is seen that the present results obtained by HSDT are in good agreement with Liu and Huang results based on first-

order shear deformation plate theory. The maximum difference is about 2%. 
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Validation Result for Random Material Properties for Thermal Post Buckling Load 

Results for normalized standard deviation for the nonlinear thermal post buckling problems are not available in 

reported literature therefore present direct iterative method in conjunction with first order perturbation technique 

[DISFEM] results are compared and validated with an independent MCS approach. Fig. 4 (a)-(b) plots the 

normalized standard deviation, SD (i.e. the ratio of the standard deviation (SD) to the mean value), of thermal post 

buckling load versus the SD to the mean value of the random material constants for an all simply supported  (S2) 

square [00/900] laminated composite plate of  temperature independent and dependent thermo-elastic material 

properties. The plate is resting on Pasternak elastic foundation (k1=100, k2=10), b/h=20 , biaxial compression , 

amplitude ratio (Wmax/h=0.2) and subjected to uniform temperature distribution changing from 0 to 20% . It is 

assumed that one of the material property (i.e., E11) change at a time keeping other as a deterministic with their 

mean values of the material properties. The dashed line is the present DISFEM result and the solid line is 

independent MCS approach. For the MCS approach, the samples are generated using Mat Lab to fit the desired 

mean and SD. These samples are used in response equation Eq. (21) which is solved repeatedly, adopting 

conventional Eigen value procedure, to generate a sample of the thermal post bucking load.  

TABLE 4 COMPARISON OF DIMENSIONLESS NONLINEAR FUNDAMENTAL FREQUENCY (NL) FOR PLATE THICKNESS RATIO (A/H=10), RISE IN 

TEMPERATURE ( T ) AND AMPLITUDE RATIOS (WMAX/H) OF (0/900)S CROSS PLY LAMINATED COMPOSITE PLATES SUBJECTED TO TWO SETS OF 

THERMAL LOADING CONDITIONS . L – LINEAR FUNDAMENTAL FREQUENCY. 

 

a/h 

 

T  

 

Wmax/h 

(nl) 

Liu et al. [1996] Present [HSDT] 

10 

0 

0.1 

0.2 

0.3 

0.5 

(l) 

15.160 

15.195 

15.272 

15.351 

15.150 

15.0985 

15.1543 

15.2424 

15.4907 

15.0794 

50 

0.1 

0.2 

0.3 

0.5 

(l) 

15.062 

15.098 

15.176 

15.254 

15.052 

15.0531 

15.0872 

15.1435 

15.3185 

15.0417 

The number of samples used for MCS approach is 12,000 based on satisfactory convergence of the results. The 

normal distribution has been assumed for random number generations in MCS. However, the present DISFEM 

used in the study does not put any limitation as regard to probability distribution of the system property. This is an 

advantage over the MCS. From the Fig. 3 (a)-(b) it is clear that, close correlation is achieved between two results 

subjected to TID and TD thermo-elastic material properties.  It can also be observed that the DISFEM for present 

analysis is sufficient to give accurate results for the level of variations considered in the basic random variables. 

The mean response values in the two methods are almost same. 

Validation Result for Random Geometric Property for Thermal Frequency 

Validation of the present DIFOPT results with MCS for a square angle ply[450/-450/450] simply supported (SSSS) 

laminated composite plate, amplitude ratios subjected to temperature change δT=100 with only one geometric 

property, h random, other deterministic is presented in Table (5).The results are in good agreement. 

Fig. 3(c) plots the normalized standard deviation, ratio of the SD/Mean of the nonlinear dimensional fundamental 

frequency versus the SD/Mean of the random material constant for all simply supported square cross ply [00/900]S 

laminated composite plate subjected to in-plane thermal loading δT =100 changing from 0 to 20%. It is assumed 

that one of the material property (i.e., E11) change at a time keeping other as a deterministic, with their mean 

values of the material properties. The dashed line is the present DISFEM result and the solid line is independent 

MCS results. The results are in good agreement. 



12                                                                                       Rajesh Kumar,  Desta Goytom 

   

TABLE 5 VALIDATION OF  PRESENT DIFOPT RESULTS WITH MCS FOR DIMENSIONLESS NONLINEAR MEAN (NL) AND COEFFICIENT OF VARIATIONS 

(NL2)  OF FUNDAMENTAL FREQUENCY FOR SQUARE ANGLE PLY [450/-450/450] SIMPLY SUPPORTED SSSS  LAMINATED COMPOSITE PLATE . PLATE 

THICKNESS RATIO (A/H), ASPECT RATIO (A/B) WITH AMPLITUDE RATIOS (WMAX/H ) SUBJECTED TO RISE IN TEMPERATURE (ΔT=100) AND  ONLY ONE 

GEOMETRIC PROPERTY, H RANDOM, OTHER DETERMINISTIC. L IS  LINEAR FUNDAMENTAL FREQUENCY. 

 

a/h 

 

a/b 

 

Wmax/h 

δT=100 

Mean 

nl 

COV, nl2 

DIFOPT, bi, i=9 MCS, bi, i=9 

20 1 

0.3 

0.6 

0.9 

l 

17.7283 

18.0347 

18.4962 (17.6204) 

0.0666 

0.0651 

0.0630 

0.0700 

0.0661 

0.0645 
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0
]

Tcrl=3.0145

Tcrnl=3.1398
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(b) TD

b/h=20, a/b=1

[0
0
/90

0
]

Tcrl=1.9603

Tcrnl=2.0431
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 (c) 

FIGURE 3. VILIDATION  OF PRESENT  DISFEM RESULTS FOR THERMAL POST BUCKING AND NONLINEAR FREE VIBRATION WITH 

INDEPENDENT MCS RESULTS FOR ONLY ONE MATERIAL E11 VARYING SUBJECTED TO BIAXIAL COMPRESSION HAVING SSSS 

(S2)SUPPOORT CONDITION WITH (a) TID (b)TD.(c)VALIDATION OF THE PRESENT DISFEM RESULTS FROM MCS 

Parametric Analysis of Second Order Statistics for Thermal Post Buckling and Non-linear Thermal Frequency 

Table (6)&(7) shows the effects of variation of individual random system properties with amplitude ratios Wmax/h 

= (0. 2, 0.4, 0.6) for SD/mean, bi, (i =1 to 10) = 0.10 keeping other as deterministic on the dimensionless mean and 

coefficient of variation of thermal post buckling temperature of 6-layers anti-symmetric angle-ply (±450)3T square 
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laminated composite plates resting on Winkler (k1=100, k2=0),  & Pasternak (k1=100, k2=10) elastic foundations 

with simply supported SSSS (S2) condition, b/h=30. The dimensionless mean values of thermal post buckling load 

are given in brackets. It is observed that amplitude ratio increases the mean thermal post buckling load and 

decreases the coefficient of variations of the plate resting on Winkler and Pasternak elastic foundations. However 

the values are significant for Pasternak foundation. Among the all system properties considered, the random 

change in E11, V12 are more sensitive with Winkler Foundation TD case, and less for G12 and α22 with Winkler 

Foundation TID case. There is significant effect of all random input parameters on the laminated composite plate 

with TD compared to TID.  

TABLE 6 EFFECTS OF VARIATION OF INDIVIDUAL RANDOM SYSTEM PROPERTY FOR BI, [(I =1 TO 10) = 0.10] WITH AMPLITUDE RATIOS (WMAX/H) ON THE 

DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF THERMAL POST BUCKLING LOAD OF ANGLE PLY [±450]3T 

SQUARE LAMINATED COMPOSITE PLATES RESTING ON WINKLER (K1=100, K2=0) ELASTIC FOUNDATION, SUBJECTED TO UNIFORM CONSTANT 

TEMPERATURE (U.T) AND IN-PLANE BI-AXIAL COMPRESSION. PLATE THICKNESS RATIO (B/H=30) WITH SIMPLE SUPPORT S2 BOUNDARY CONDITIONS. 

THE DIMENSIONLESS MEAN THERMAL POST BUCKLING TEMPERATURES ARE GIVEN IN BRACKETS. TCRL - LINEAR SOLUTION 

bi Wmax/h 

Winkler foundation (k1=100,  k2=0) 

(TID) (TD) 

(Mean, Tcrnl) ,COV, crnl (Mean, Tcrnl ), COV, crnl 

 

E11 

(i=1) 

0.2 

0.4 

0.6 

Tcrl 

0.0351 (1.4345) 

0.0338 (1.5461) 

0.0326 (1.6778) 

1.3898 

0.0173(0.9405) 

0.0173(1.0156) 

0.0174 (1.1090) 

0.9115 

 

E22 

(i=2) 

0.2 

0.4 

0.6 

0.0111 

0.0102 

0.0090 

0.0113 

0.0097 

0.0072 

 

G12(i=3) 

0.2 

0.4 

0.6 

1.0051e-04 

1.4754e-04 

2.0204e-04 

1.2991e-04 

1.2991e-04 

2.8278e-04 

 

G13 (i=4) 

0.2 

0.4 

0.6 

0.0071 

0.0069 

0.0071 

0.0051 

0.0050 

0.0051 

 

G23 (i=5) 

0.2 

0.4 

0.6 

0.0028 

0.0028 

0.0029 

0.0021 

0.0020 

0.0021 

 

V12 (i=6) 

0.2 

0.4 

0.6 

0.0268 

0.0249 

0.0230 

0.0974 

0.0905 

0.0832 

 

α11 (i=7) 

0.2 

0.4 

0.6 

0.0494 

0.0458 

0.0422 

0.0685 

0.0635 

0.0581 

 

α22 (i=8) 

0.2 

0.4 

0.6 

7.6651e-04 

7.1114e-04 

6.5529e-04 

0.0015 

0.0014 

0.0013 

 

k1 (i=9) 

0.2 

0.4 

0.6 

0.0135 

0.0125 

0.0114 

0.0132 

0.0122 

0.0111 

 

k2 (i=10) 

0.2 

0.4 

0.6 

0 

0 

0 

0 

0 

0 

Table (8) presents the variation of dimensionless mean and coefficient of variations of nonlinear fundamental 

frequency with amplitude ratios (Wmax/h = 0.3, 0.6 and 0.9) for symmetric 4-layers cross-ply [00/900]2S laminated 

composite square plate, simply supported boundary conditions, a/h = 20 with thermal loadings δT = 100, 200. The 

individual change in random system properties (bi) such as material properties and thermal expansion coefficients 

has been considered in the analysis with coefficient of variations bi =0.10, keeping all other random input as 

deterministic at their mean values. The nonlinear fundamental frequency is most affected by the random change in 

the coefficient of variations E11 and least affected by Poisson ratio υ12. From the table it can be seen that the effect 

of temperature rise,   lowers the fundamental frequency at same amplitude ratio because it brings in a compressive 
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in-plane prestress state that leads to degradation in plate stiffness. At the same thermal loading the nonlinear mean 

frequency increases with increase the amplitude ratio. From the table it is clear that temperature increments make 

the nonlinear frequency more sensitive to the random change in thermal expansion coefficients. 

TABLE 7 EFFECTS OF VARIATION OF INDIVIDUAL RANDOM SYSTEM PROPERTY FOR BI, [(I =1 TO 10) = 0.10] WITH AMPLITUDE RATIOS (WMAX/H) ON THE 

DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF THERMAL POST BUCKLING LOAD OF ANGLE PLY [±450]3T 

SQUARE LAMINATED COMPOSITE PLATES RESTING ON PASTERNAK (K1=100, K2=10) ELASTIC FOUNDATION, SUBJECTED TO UNIFORM CONSTANT 

TEMPERATURE (U.T) AND IN-PLANE BI-AXIAL COMPRESSION. PLATE THICKNESS RATIO (B/H=30) WITH SIMPLE SUPPORT S2 BOUNDARY CONDITIONS. 

THE DIMENSIONLESS MEAN THERMAL POST BUCKLING TEMPERATURES ARE GIVEN IN BRACKETS. TCRL - LINEAR SOLUTION. 

 

bi 

 

Wmax/h 

Pasternak Foundation (k1 = 100, k2 = 10) 

(TID) (TD) 

(Mean, Tcrnl) , COV, crnl 

 

(Mean, Tcrnl) , COV, crnl 

 

 

E11 

(i=1) 

0.2 

0.4 

0.6 

Tcrl 

0.0470 (1.8163) 

0.0453 (1.9279) 

0.0435 (2.0595) 

1.7716 

0.0321(1.1864) 

0.0312(1.2615) 

0.0302(1.3548) 

1.1574 

 

E22 

(i=2) 

0.2 

0.4 

0.6 

0.0083 

0.0077 

0.0069 

0.0822 

0.0071 

0.0053 

 

G12(i=3) 

0.2 

0.4 

0.6 

7.9388e-05 

1.1832e-04 

1.6459e-04 

1.0299e-04 

1.6112e-04 

2.3146e-04 

 

G13 (i=4) 

0.2 

0.4 

0.6 

0.0056 

0.0055 

0.0058 

0.0041 

0.0040 

0.0042 

 

G23 (i=5) 

0.2 

0.4 

0.6 

0.0022 

0.0022 

0.0023 

0.0016 

0.0016 

0.0017 

 

V12 (i=6) 

0.2 

0.4 

0.6 

0.0329 

0.0311 

0.0292 

0.1190 

0.1122 

0.1047 

 

α11 (i=7) 

0.2 

0.4 

0.6 

0.0390 

0.0367 

0.0344 

0.0543 

0.0511 

0.0476 

 

α22 (i=8) 

0.2 

0.4 

0.6 

6.0540e-04 

5.7032e-04 

5.3382e-04 

0.0012 

0.0011 

0.0010 

 

k1 (i=9) 

0.2 

0.4 

0.6 

0.0106 

0.0100 

0.0093 

0.0105 

0.0098 

0.0091 

 

k2 (i=10) 

0.2 

0.4 

0.6 

0.0210 

0.0198 

0.0185 

0.0207 

0.0195 

0.0181 

Table  (9)&(10) show the effects of thickness ratios with amplitude ratios for SD/mean bi,[{(i =1 to 8), (7, 8) and (9, 

10)} = 0.10] on the dimensionless mean and coefficient of variations of thermal post buckling temperature of cross 

ply  [00/900]2T square laminated composite plate resting on Winkler and Pasternak elastic foundations subjected to 

uniform constant temperature (U.T) and in-plane bi-axial compression with simple support S2 boundary 

conditions. The effect of amplitude ratios increases the dimensionless mean and decreases the coefficient of 

variations of thermal post buckling temperature in both of the TID and TD case. The effect of dimensionless mean 

and coefficient of variations of thermal post buckling temperature is more prominent in TD case. As the thickness 

ratio increases the dimensionless mean thermal post buckling temperature decreases in the both of the TID and TD 

case whereas coefficient of variations increases and is more pronounced for TD case. The effect of random thermal 

expansion coefficients on the coefficient of variations of thermal buckling load is significant in TD condition and 

foundation parameters show fewer effects in both TID and TD cases of plate with Winkler elastic foundation. The 

random foundation parameters have significant effects in case of plate with Pasternak foundation. The results are 
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more prominent for the plate with Winkler elastic foundation. 

TABLE 8 EFFECT OF INDIVIDUAL RANDOM MATERIAL PROPERTIES FOR  BI,[ (I =1 TO 8) = 0.10] WITH AMPLITUDE RATIOS( WMAX/H) ON THE 

DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF NONLINEAR FUNDAMENTAL FREQUENCY OF SYMMETRIC 

CROSS-PLY [00/900]S LAMINATED COMPOSITE SQUARE PLATE, RISE IN TEMPERATURE (ΔT) AND SIMPLE SUPPORT  SSSS BOUNDARY CONDITIONS. PLATE 

THICKNESS RATIO (A/H=20). L- LINEAR FUNDAMENTAL FREQUENCY. 

 

bi 

 

Wmax/h 

δT=100 δT=200 

Mean (Tcrnl) 

COV, nl2 

Mean (Tcrnl) 

COV, nl2 

 

E11 

(i=1) 

0.3 

0.6 

0.9 

l 

0.0874 (17.4131) 

0.0859 (17.6820) 

0.0836 (18.1120) 

17.3214 

0.0973 (17.0465) 

0.0956  (17.3098) 

0.0929 (17.7307) 

16.9567 

 

E22 

(i=2) 

0.3 

0.6 

0.9 

0.0042 

0.0041 

0.0040 

0.0064 

0.0062 

0.0060 

 

G12 

(i=3) 

0.3 

0.6 

0.9 

0.0059 

0.0077 

0.0104 

0.0062 

0.0081 

0.0109 

 

G13 

(i=4) 

0.3 

0.6 

0.9 

0.0111 

0.0108 

0.0103 

0.0116 

0.0113 

0.0107 

 

G23 

(i=5) 

0.3 

0.6 

0.9 

0.0033 

0.0032 

0.0031 

0.0035 

0.0034 

0.0032 

12  

(i=6) 

0.3 

0.6 

0.9 

2.8939e-04 

2.8336e-04 

2.7462e-04 

3.0242e-04 

2.9613e-04 

2.8702e-04 

 

α1 

(i=7) 

0.3 

0.6 

0.9 

0.0060 

0.0058 

0.0055 

0.0124 

0.0121 

0.0115 

 

α2 

(i=8) 

0.3 

0.6 

0.9 

9.2634e-04 

8.9796e-04 

8.5522e-04 

0.0020 

0.0019 

0.0018 

 

TABLE 9 EFFECTS OF PLATE THICKNESS RATIOS (B/H )WITH AMPLITUDE RATIOS (WMAX/H) FOR  BI,[{(I =1 TO 8), (7, 8) AND (9, 10)} = 0.10] ON THE 

DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF THERMAL POST BUCKLING TEMPERATURE OF CROSS PLY  

[00/900] 2T SQUARE LAMINATED COMPOSITE PLATE RESTING ON WINKLER (K1=100, K2=0) ELASTIC FOUNDATIONS, SUBJECTED TO UNIFORM 

CONSTANT TEMPERATURE (U.T) , IN-PLANE BI-AXIAL COMPRESSION  WITH SIMPLE SUPPORT S2 BOUNDARY CONDITIONS. TCRL - LINEAR SOLUTION. 

b/h 
 

Wmax/h 

(TID) (TD) 

 

Mean 

Tcrnl 

COV, crnl  

Mean 

Tcrnl 

COV, crnl 

bi bi 

(i=1,...,8) i=(7,8) (i=9,10) (i=1,...,8) i=(7, 8) (i=9,10) 

 

 

40 

0.2 

0.4 

0.6 

Tcrl 

0.5890 

0.6771 

0.7835 

(0.5530) 

0.1359 

0.1176 

0.1011 

0.1202 

0.1046 

0.0904 

0.0348 

0.0301 

0.0256 

0.3825 

0.4402 

0.5064 

(0.3594) 

0.2451 

0.2125 

0.1843 

0.1686 

0.1465 

0.1273 

0.0337 

0.0292 

0.0252 

 

 

50 

0.2 

0.4 

0.6 

Tcrl 

0.3809 

0.4393 

0.5064 

(0.3575) 

0.2215 

0.1908 

0.1643 

 

0.1859 

0.1612 

0.1399 

0.0344 

0.0297 

0.0256 

0.2469 

0.2820 

0.3284 

(0.2320) 

0.3627 

0.3164 

0.2705 

0.2612 

0.2286 

0.1963 

0.0334 

0.0292 

0.0249 

Table (11) & (12). shows the effect of support edge conditions (CCCC, SSSS and CSCS) with amplitude ratio on the 

mean and coefficient of variations of the dimensionless nonlinear fundamental frequency for cross-ply [00/900] S  

and angle-ply (±450)S square laminate with all random input such as combination of material properties and 
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thermal expansion coefficients as well as thermal expansion coefficients separately, changing simultaneously for 

a/h = 10 . All the inputs RVs (bi, i = 1, 2, .,8) and thermal expansion coefficient inputs RVs (bi, i = 7, 8) are assumed 

to have coefficient of variation. From the table it can be seen that the coefficient of variation in the nonlinear 

fundamental frequency is highest in case of plate with simple support SSSS, while it is lowest for clamped 

supported CCCC. In contrast the mean values of SSSS plate and CCCC plate show the opposite effect, i.e., vise 

versa to sensitivity. As the amplitude ratio increases the coefficient of variations of nonlinear frequency of the plate 

decreases in SSSS and CSCS support conditions, however no definite change is observed in CCCC support 

condition in the case of cross-ply plate. In the case of angle-ply plate with SSSS and CSCS support conditions 

coefficient of variations of nonlinear frequency increases with increase the amplitude ratio, however no definite 

trend is also observed with CCCC support condition. In general, the presented results reveal that the effect of 

randomness in thermal expansion coefficients on the coefficient of variations of the nonlinear frequency is 

significant. Finally, we consider the effect of plate geometry on the mean and coefficient of variations of the 

nonlinear fundamental frequency.  

TABLE 10EFFECTS OF PLATE THICKNESS RATIOS (B/H )WITH AMPLITUDE RATIOS (WMAX/H) FOR  BI,[{(I =1 TO 8), (7, 8) AND (9, 10)} = 0.10] ON THE 

DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF THERMAL POST BUCKLING TEMPERATURE OF CROSS PLY  

[00/900] 2T SQUARE LAMINATED COMPOSITE PLATE RESTING ON PASTERNAK (K1=100, K2=10) ELASTIC FOUNDATIONS, SUBJECTED TO UNIFORM 

CONSTANT TEMPERATURE (U.T) , IN-PLANE BI-AXIAL COMPRESSION  WITH SIMPLE SUPPORT S2 BOUNDARY CONDITIONS. TCRL - LINEAR SOLUTION. 

 

b/h 

 

Wmax/h 

(TID) (TD) 

 

Mean 

Tcrnl 

COV, crnl  

Mean 

Tcrnl 

COV, crnl 

bi bi 

(i=1,...,8) i=(7, 8) (i=9,10) (i=1,...,8) i=(7, 8) (i=9,10) 

 

 

40 

0.2 

0.4 

0.6 

Tcrl 

0.9938 

1.0819 

1.1883 

(0.9578) 

0.0873 

0.0807 

0.0742 

0.0713 

0.0655 

0.0596 

0.0457 

0.0419 

0.0380 

0.6374 

0.6951 

0.7614 

(0.6143) 

0.1840 

0.1692 

0.1550 

0.1012 

0.0928 

0.0847 

0.0448 

0.0411 

0.0374 

 

 

50 

0.2 

0.4 

0.6 

Tcrl 

0.6400 

0.6984 

0.7654 

(0.6166) 

0.1242 

0.1136 

0.1034 

0.1107 

0.1014 

0.0925 

0.0454 

0.0415 

0.0378 

0.4100 

0.4452 

0.4916 

(0.3951) 

0.2356 

0.2168 

0.1963 

0.1573 

0.1448 

0.1312 

0.0446 

0.0410 

0.0371 

 

TABLE 11 EFFECT OF BOUNDARY SUPPORT CONDITIONS (BCS) FOR BI,[(I =1,...,8 & 7, 8) = 0.10] WITH AMPLITUDE RATIOS (WMAX/H) ON THE 

DIMENSIONLESS EXPECTED MEAN (NL) AND COEFFICIENT OF VARIATIONS (NL2) OF NONLINEAR FUNDAMENTAL FREQUENCY OF SYMMETRIC 

CROSS-PLY [00/900]S LAMINATED COMPOSITE SQUARE PLATE WITH RISE IN TEMPERATURE (ΔT). PLATE THICKNESS RATIO (A/H =10). L IS LINEAR 

FUNDAMENTAL FREQUENCY. 

 

BCs 

 

Wmax/h 

δT=100 δT=200 

Mean 

nl 

COV, nl2 
Mean 

nl 

COV, nl2 

bi, i=1,..,8 bi, i=7,8 bi, i=1,..,8 bi, i=7,8 

 

 

SSSS 

0.3 

0.6 

0.9 

l 

15.1052 

15.3964 

15.8467 

(15.0039) 

0.0673 

0.0661 

0.0645 

0.0020 

0.0019 

0.0018 

15.0288 

15.3185 

15.7666 

(14.9279) 

0.0698 

0.0686 

0.0669 

0.0040 

0.0039 

0.0036 

 

 

CCCC 

0.3 

0.6 

0.9 

l 

23.9000 

27.7153 

27.3002 

(22.4167) 

0.0614 

0.0618 

0.0610 

 

8.4767e-004 

8.0441 e-004 

7.7003e-004 

23.8072 

27.8279 

27.1658 

(22.3189) 

0.0625 

0.0645 

0.0620 

0.0017 

0.0012 

0.0016 

 

 

CSCS 

0.3 

0.6 

0.9 

l 

18.7673 

19.2235 

19.8736 

(18.6011) 

0.0613 

0.0596 

0.0577 

0.0014 

0.0013 

0.0012 

18.6807 

19.1352 

19.7876 

(18.5146) 

0.0629 

0.0612 

0.0591 

0.0028 

0.0026 

0.0024 
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TABLE 12 EFFECT OF BOUNDARY SUPPORT CONDITIONS (BCS) FOR BI,[(I =1,...,8 & 7, 8) = 0.10] WITH AMPLITUDE RATIOS (WMAX/H) ON THE 

DIMENSIONLESS EXPECTED MEAN (NL) AND COEFFICIENT OF VARIATIONS (NL2) OF NONLINEAR FUNDAMENTAL FREQUENCY OF SYMMETRIC 

ANGLE -PLY [±450]S LAMINATED COMPOSITE SQUARE PLATE WITH RISE IN TEMPERATURE (ΔT). PLATE THICKNESS RATIO (A/H =10). L IS LINEAR 

FUNDAMENTAL FREQUENCY. 

 

BCs 

 

Wmax/h 

δT=100 δT=200 

Mean 

nl 

COV, nl2 
Mean 

nl 

COV, nl2 

bi, i=1,..,8 bi, i=7,8 bi, i=1,..,8 bi, i=7,8 

 

 

SSSS 

0.3 

0.6 

0.9 

l 

17.8120 

19.8566 

22.5515 

(17.0086) 

0.0670 

0.0712 

0.0748 

0.0015 

0.0012 

9.238e-04 

17.7241 

19.7650 

21.2648 

(16.9250) 

0.0691 

0.0731 

0.0724 

0.0030 

0.0024 

0.0022 

 

 

CCCC 

0.3 

0.6 

0.9 

l 

22.8071 

26.0220 

26.6363 

(21.5997) 

0.0601 

0.0620 

0.0597 

 

9.446e-04 

7.038e-04 

8.701e-04 

22.7070 

25.9317 

26.5088 

(21.5023) 

0.0613 

0.0631 

0.0608 

0.0019 

0.0021 

0.0022 

 

 

CSCS 

0.3 

0.6 

0.9 

l 

20.0160 

22.3299 

23.7000 

(19.1249) 

0.0617 

0.0646 

0.0638 

0.0012 

9.585e-04 

9.129e-04 

19.9224 

22.2368 

23.5888 

(19.0339) 

0.0633 

0.0661 

0.0655 

0.0024 

0.0019 

0.0015 

The effects of  aspect ratios  with amplitude ratios on the dimensionless mean and coefficient of variations of  

[00/900/00] and [00/900]2T cross ply laminated composite plate resting on Winkler and Pasternak elastic foundation 

subjected to uniform constant temperature (U.T) , in-plane bi-axial compression , simple support S2 boundary 

conditions and b/h=60 for bi, [{(i =1 to 8), (7,8) and (9, 10)} = 0.10] is shown in Table (13)& (14). The effect of 

amplitude ratio increases the mean thermal post buckling temperature and decreases the coefficient of variations of 

the plate in both TID and TD cases. But when the number of layer increases the mean thermal post buckling 

temperature increases and coefficient of variations decreases, whereas when aspect ratio is increased the 

dimensionless mean thermal post buckling temperature decreases and coefficient of variations increases. The effect 

of random thermal expansion coefficients on the coefficient of variations of thermal buckling load is significant in 

TID and TD condition while foundation parameters show fewer effects in both TID and TD cases of plate 

supported with either Winkler or Pasternak elastic foundation. The result is more prominent for the plate with 

Winkler elastic foundation TD case.  

TABLE 13 EFFECTS OF  ASPECT RATIOS (A/B) , LAMINA LAY-UP AND  AMPLITUDE RATIOS (WMAX/H) FOR   BI, [{(I =1 TO 8), (7,8) AND (9, 10)} = 0.10] ON 

THE DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF [00/900/00] AND [00/900]2T CROSS PLY LAMINATED 

COMPOSITE PLATE RESTING ON WINKLER ELASTIC FOUNDATION (K1=100, K2=0), SUBJECTED TO UNIFORM CONSTANT TEMPERATURE (U.T), IN-PLANE 

BI-AXIAL COMPRESSION AND  SIMPLE SUPPORT S2 BOUNDARY CONDITIONS. PLATE THICKNESS RATIO (B/H=60) .TCRL - LINEAR SOLUTION. 

 

 

Lay-up 

 

 

a/b 

 

 

Wmax/h 

 (TID)  (TD) 

 

Mean 

Tcrnl 

COV, crnl  

Mean 

Tcrnl 

COV, crnl 

bi bi 

(i=1,...,8) i=(7, 8) (i=9,10) (i=1,...,8) i=(7, 8) (i=9,10) 

 

 

 

 

[00/900]2T 

 

1 

 

0.2 

0.4 

0.6 

Tcrl 

0.2663 

0.3047 

0.3633 

(0.2499) 

0.3324 

0.2892 

0.2402 

0.2659 

0.2325 

0.1950 

0.0342 

0.0298 

0.0246 

0.1724 

0.1973 

0.2373 

(0.1620) 

0.5195 

0.4525 

0.3742 

0.3740 

0.3267 

0.2717 

0.0333 

0.0290 

0.0236 

 

2 

 

0.2 

0.4 

0.6 

Tcrl 

0.1537 

0.1694 

0.1821 

(0.1398) 

0.6107 

0.5517 

0.5115 

0.4180 

0.4180 

0.0043 

0.4606 

0.0049 

0.0043 

0.0999 

0.1156 

0.1260 

(0.0907) 

0.9105 

0.7851 

0.7181 

0.6453 

0.5578 

0.5116 

0.0057 

0.0047 

0.0044 

 

 

 

 

[00/900]3T 

 

1 

 

0.2 

0.4 

0.6 

Tcrl 

0.2831 

0.3223 

0.3747 

(0.2666) 

0.3092 

0.2702 

0.2308 

0.2502 

0.2197 

0.1890 

0.0322 

0.0282 

0.0241 

0.1826 

0.2080 

0.2483 

( 0.1721) 

0.4845 

0.4238 

0.3529 

0.3532 

0.3099 

0.2597 

0.0314 

0.0275 

0.0227 

 

2 

 

0.2 

0.4 

0.6 

Tcrl 

0.1679 

0.1873 

0.1541 

(0.1539 

0.3215 

0.4938 

0.6041 

0.4216 

0.3781 

0.4594 

0.0055 

0.0045 

0.0040 

0.1085 

0.1266 

0.1310 

(0.0993) 

0.8314 

0.7100 

0.6849 

0.5943 

0.5091 

0.4922 

0.0053 

0.0044 

0.0038 
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TABLE 14 EFFECTS OF  ASPECT RATIOS (A/B) , LAMINA LAY-UP AND  AMPLITUDE RATIOS (WMAX/H) FOR   BI, [{(I =1 TO 8), (7,8) AND (9, 10)} = 0.10] ON 

THE DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF [00/900/00] AND [00/900]2T CROSS PLY LAMINATED 

COMPOSITE PLATE RESTING ON PASTERNAK ELASTIC FOUNDATION (K1=100, K2=10), SUBJECTED TO UNIFORM CONSTANT TEMPERATURE (U.T), IN-

PLANE BI-AXIAL COMPRESSION AND  SIMPLE SUPPORT S2 BOUNDARY CONDITIONS. PLATE THICKNESS RATIO (B/H=60) .TCRL - LINEAR SOLUTION. 

Lay-up a/b Wmax/h 

(TID) (TD) 

 

Mean 

Tcrnl 

COV, crnl  

Mean 

Tcrnl 

COV, crnl 

bi bi 

(i=1,,8) i=(7, 8) (i=9,10) (i=1,...,8) i=(7,8) (i=9,10) 

 

 

 

 

[00/900]2T 

 

1 

 

0.2 

0.4 

0.6 

Tcrl 

0.4462 

0.4846 

0.5432 

(0.4299) 

0.1834 

0.1684 

0.1492 

0.1587 

0.1461 

0.1304 

0.0452 

0.0416 

0.0370 

0.2857 

0.3106 

0.3506 

(0.2753) 

0.3174 

0.2914 

0.2578 

0.2257 

0.2076 

0.1839 

0.0444 

0.0409 

0.0361 

 

2 

 

0.2 

0.4 

0.6 

Tcrl 

0.1987 

0.2144 

0.2271 

(0.1848 ) 

0.4599 

0.4245 

0.3994 

0.3563 

0.3303 

0.3118 

0.0231 

0.0213 

0.0201 

0.1282 

0.1439 

0.1543 

(0.1190) 

0.7020 

0.6243 

0.5806 

0.5027 

0.4480 

0.4177 

0.0225 

0.0200 

0.0187 

 

 

 

 

[00/900]3T 

 

1 

 

0.2 

0.4 

0.6 

Tcrl 

0.4630 

0.5023 

0.5546 

(0.4465 ) 

0.1750 

0.1608 

0.1449 

0.1530 

0.1410 

0.1277 

0.0436 

0.0401 

0.0363 

0.2959 

0.3213 

0.3616 

(0.2854) 

0.3019 

0.2773 

0.2457 

0.2179 

0.2007 

0.1783 

0.0429 

0.0395 

0.0350 

 

2 

 

0.2 

0.4 

0.6 

Tcrl 

0.2129 

0.2323 

0.2422 

(0.1989 ) 

0.4250 

0.3877 

0.3705 

0.3326 

0.3049 

0.2923 

0.0216 

0.0197 

0.0189 

0.1368 

0.1550 

0.1593 

(0.1276) 

0.6518 

0.5739 

0.5574 

0.4712 

0.4160 

0.4047 

0.0211 

0.0186 

0.0180 

Table (15)&(16) shows the effect of plate thickness ratios (a/h=10 and 20) with amplitude ratios on the mean and 

coefficient of variations for SD/mean, bi, {i = (1,..., 8) and (7,8)} = 0.10 of nonlinear fundamental frequency of two 

layer cross-ply [00/900] and angle-ply [±450] square plate subjected to various temperature changes simply 

supported. The thin plate (a/h=20) shows higher nonlinear frequency as compare to moderately thick plate (a/h=10). 

As revealed by numerical results, for the same amplitude ratio and temperature increments thin plate shows 

higher coefficient of variations to random change in both all random input variables and thermal expansion 

coefficients. However, increase the temperature sensitivity of thermal expansion coefficients for the plate increases 

with increase the a/h ratio. It is true in both of the cross-ply and angle-ply plates. As the amplitude ratio and 

temperature increases the coefficient of variations of nonlinear frequency of the plate decreases in both of thin and 

moderately thick plate for cross-ply plate, while, in the case of angle-ply plate the coefficient of variations of 

nonlinear frequency of the plate increases at lower temperature. However increases the temperature coefficient of 

variations of the plate decreases to random change in both all random variables and thermal expansion coefficients 

with increase the amplitude ratio. 

TABLE 15 EFFECT OF PLATE THICKNESS RATIOS (A/H),  RISE IN TEMPERATURE(ΔT) FOR  BI, [(I =1,...,8 & 7, 8) = 0.10 ] WITH AMPLITUDE RATIOS (WMAX/H) 

ON THE DIMENSIONLESS EXPECTED MEAN (NL) AND COEFFICIENT OF VARIATIONS (NL2) OF NONLINEAR FUNDAMENTAL FREQUENCY OF ANTI-

SYMMETRIC CROSS-PLY [00/900]2T LAMINATED COMPOSITE SQUARE PLATE. L IS LINEAR FUNDAMENTAL FREQUENCY. 

 

a/h 

 

Wmax/h 

δT=100 δT=200 

Mean 

nl 

COV, nl2 Mean 

nl 

COV, nl2 

bi, i=1,..,8 bi, i=7,8 bi, i=1,..,8 bi, i=7,8 

 

 

10 

0.3 

0.6 

0.9 

l 

10.6602 

11.0746 

11.7033 

(10.5154) 

0.0645 

0.0635 

0.0624 

0.0040 

0.0037 

0.0033 

10.6064 

11.0184 

11.6443 

(10.4622) 

0.0694 

0.0680 

0.0664 

0.0080 

0.0074 

0.0066 

 

 

20 

0.3 

0.6 

0.9 

l 

11.0881 

11.5077 

12.1594 

(10.9432) 

0.0824 

0.0801 

0.0774 

0.0148 

0.0138 

0.0123 

10.8546 

11.2654 

11.9033 

(10.7128) 

0.1048 

0.1008 

0.0958 

0.0310 

0.0287 

0.0257 

Table  (17)&(18) show the effects of support conditions (SSSS (S1), SSSS(S2), CCCC, CSCS) with amplitude ratios  

on the dimensionless mean and coefficient of variations of thermal post buckling temperature for bi,[{(i =1 to 8), 
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(7,8) and (9, 10)} = 0.10],  b/h=60, of angle ply [±450]2T laminated  square composite plate resting on Winkler and 

Pasternak elastic foundations subjected to in-plane bi-axial compression. The effects of amplitude ratios increases 

the dimensionless mean values and decreases the dimensionless coefficient of variations values in both TID and TD 

cases, but when support conditions are changed the effects are seen significant in clamp support conditions. The 

buckling load coefficient of variations is highest for the plate resting on either Winkler elastic foundation or 

Pasternak foundation with SSSS (S2) support condition while lowest with CCCC support conditions. It is observed 

that the plate with all system properties subjected to TD is more sensitive than TID. In general, the thermal 

buckling load for the plate resting on Winkler elastic foundation is higher than the plate resting on Pasternak 

elastic foundations.  The effect of random thermal expansion coefficients on the coefficient of variations of thermal 

buckling load is significant in TD condition for simple support S2, while foundation parameters show fewer effects 

for clamp support condition in both TID and TD cases of plate with Winkler and Pasternak elastic foundation. The 

result is more prominent for the plate with Winkler elastic foundation subjected to TD case. 

TABLE 16 EFFECT OF PLATE THICKNESS RATIOS (A/H),  RISE IN TEMPERATURE(ΔT) FOR  BI, [(I =1,...,8 & 7, 8) = 0.10 ] WITH AMPLITUDE RATIOS (WMAX/H) 

ON THE DIMENSIONLESS EXPECTED MEAN (NL) AND COEFFICIENT OF VARIATIONS (NL2) OF NONLINEAR FUNDAMENTAL FREQUENCY OF ANGLE PLY 

[±450]S LAMINATED COMPOSITE SQUARE PLATE. L IS LINEAR FUNDAMENTAL FREQUENCY. 

 

a/h 

 

Wmax/h 

δT=100 δT=200 

Mean 

nl 

COV, nl2 

Mean 

nl 

COV, nl2 

bi, i=1,..,8 bi, i=7,8 bi, i=1,..,8 bi, i=7,8 

 

 

10 

0.3 

0.6 

0.9 

l 

16.0254 

17.4523 

19.4098 

(15.4897) 

0.0698 

0.0705 

0.0709 

0.0053 

0.0044 

0.0036 

15.9447 

17.3637 

19.3238 

(15.4119) 

0.0762 

0.0760 

0.0753 

0.0107 

0.0090 

0.0073 

 

20 

0.3 

0.6 

0.9 

l 

17.9306 

19.5795 

21.9626 

(17.3279) 

0.0839 

0.0843 

0.0845 

0.0058 

0.0048 

0.0038 

17.5563 

19.1710 

21.5482 

(16.9660) 

0.0941 

0.0934 

0.0918 

0.0121 

0.0101 

0.0079 

 

TABLE 17 EFFECTS OF BOUNDARY SUPPORT CONDITIONS(BCS) WITH AMPLITUDE RATIOS (WMAX/H)  FOR BI,[{(I =1 TO 8), (7,8) AND (9, 10)} = 0.10],ON 

THE DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF THERMAL POST BUCKLING TEMPERATURE FOR  PLATE 

THICKNESS RATIO (A/H=60),  ANGLE PLY [±450]2T LAMINATED  SQUARE COMPOSITE PLATE RESTING ON WINKLER ELASTIC FOUNDATION (K1=100, 

K2=0), SUBJECTED TO UNIFORM CONSTANT TEMPERATURE (U.T) , IN-PLANE BI-AXIAL COMPRESSION. TCRL - LINEAR SOLUTION. 

 

BCs 

 

Wmax/h 

(TID) (TD) 

Mean 

Tcrnl 

COV, crnl 

Mean 

Tcrnl 

COV, crnl 

bi bi 

(i=1,...,8) i=(7, 8) (i=9,10) (i=1,...,8) i=(7, 8) (i=9,10) 

 

SSSS 

(S1) 

0.2 

0.4 

0.6 

Tcrl 

0.3755 

0.4068 

0.4512 

(0.3640) 

0.2218 

0.2041 

0.1831 

0.1886 

0.1741 

0.1570 

0.0128 

0.0119 

0.0107 

0.2411 

0.2617 

0.2919 

(0.2337) 

0.3575 

0.3285 

0.2934 

0.2674 

0.2464 

0.2209 

0.0129 

0.0119 

0.0106 

 

SSSS 

(S2) 

0.2 

0.4 

0.6 

Tcrl 

0.3716 

0.4022 

0.4480 

(0.3602) 

0.2247 

0.2070 

0.1849 

0.1906 

0.1761 

0.1581 

0.0130 

0.0120 

0.0107 

0.2389 

0.2586 

0.2864 

(0.2314) 

0.3622 

0.3338 

0.3003 

0.2699 

0.2493 

0.2251 

0.0130 

0.0120 

0.0108 

 

 

CCCC 

0.2 

0.4 

0.6 

Tcrl 

0.6529 

0.7102 

0.7938 

(0.6322) 

0.1215 

0.1114 

0.0994 

0.1085 

0.0997 

0.0892 

0.0055 

0.0051 

0.0046 

0.4342 

0.4725 

0.5303 

(0.4207) 

0.2146 

0.1966 

0.1744 

 

0.1485 

0.1365 

0.1216 

 

0.0053 

0.0049 

0.0044 

 

 

CSCS 

0.2 

0.4 

0.6 

Tcrl 

0.4835 

0.5390 

0.6174 

(0.4636) 

0.1678 

0.1499 

0.1302 

0.1465 

0.1314 

0.1147 

0.0085 

0.0076 

0.0066 

0.3154 

0.3516 

0.4079 

(0.3025) 

0.2784 

0.2494 

0.2147 

0.2044 

0.1834 

0.1581 

0.0083 

0.0075 

0.0065 
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TABLE 18 EFFECTS OF BOUNDARY SUPPORT CONDITIONS(BCS) WITH AMPLITUDE RATIOS (WMAX/H)  FOR BI,[{(I =1 TO 8), (7,8) AND (9, 10)} = 0.10],ON 

THE DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF THERMAL POST BUCKLING TEMPERATURE FOR  PLATE 

THICKNESS RATIO (A/H=60),  ANGLE PLY [±450]2T LAMINATED  SQUARE COMPOSITE PLATE RESTING ON PASTERNAK ELASTIC FOUNDATION (K1=100, 

K2=10), SUBJECTED TO UNIFORM CONSTANT TEMPERATURE (U.T) , IN-PLANE BI-AXIAL COMPRESSION. TCRL - LINEAR SOLUTION. 

 

BCs 

 

Wmax/h 

(TID) (TD) 

 

Mean 

Tcrnl 

COV, crnl  

Mean 

Tcrnl 

COV, crnl 

bi bi 

(i=1,...,8) i=(7, 8) (i=9,10) (i=1,...,8) i=(7, 8) (i=9,10) 

 

SSSS 

(S1) 

0.2 

0.4 

0.6 

Tcrl 

0.4710 

0.5020 

0.5483 

(0.4595) 

0.1715 

0.1604 

0.5483 

0.1504 

0.1411 

0.1292 

0.0227 

0.0213 

0.0195 

0.3027 

0.3228 

0.3512 

(0.2952) 

0.2919 

0.2731 

0.2500 

0.2130 

0.1998 

0.1836 

0.0228 

0.0213 

0.0196 

 

SSSS 

(S2) 

0.2 

0.4 

0.6 

Tcrl 

0.4671 

0.4977 

0.5435 

(0.4557) 

0.1733 

0.1623 

0.1480 

0.1516 

0.1423 

0.1303 

0.0229 

0.0215 

0.0196 

0.3004 

0.3201 

0.3479 

(0.2929) 

0.2955 

0.2767 

0.2538 

 

0.2147 

0.2014 

0.1854 

0.0229 

0.0215 

0.0198 

 

 

CCCC 

0.2 

0.4 

0.6 

Tcrl 

0.7484 

0.8056 

0.8893 

(0.7276) 

0.1065 

0.0988 

0.0894 

0.0946 

0.0879 

0.0796 

0.0136 

0.0127 

0.0115 

0.4957 

0.5340 

0.5918 

(0.4821) 

0.2014 

0.1866 

0.1678 

0.1301 

0.1207 

0.1090 

0.0132 

0.0123 

0.0111 

 

CSCS 

0.2 

0.4 

0.6 

Tcrl 

0.5789 

0.6345 

0.7128 

(0.5590) 

0.1376 

0.1253 

0.1111 

0.1223 

0.1116 

0.0994 

0.0179 

0.0164 

0.0146 

0.3769 

0.4130 

0.4694 

(0.3640) 

0.2440 

0.2225 

0.1961 

0.1711 

0.1561 

0.1374 

0.0177 

0.0162 

0.0143 

The effect of plate aspect ratios (a/b=1 and 1.5) with amplitude ratios on the mean and coefficient of variations of 

the nonlinear fundamental frequency of four layers anti-symmetric cross-ply [00/900]2T and angle-ply [±450]2T 

laminated composite plates with bi {i = (1,...,8) and (7, 8)}=0.10, a/h=20 is shown in Table (19)-(20). As revealed by 

numerical results, for the same amplitude ratio and temperature increments rectangular plate (a/b=1.5) shows 

higher mean and coefficient of variations to both random change in all random input variables and thermal 

expansion coefficients as compared to square plate (a/b=1). 

TABLE 19 EFFECT OF PLATE ASPECT RATIO (A/B), RISE IN TEMPERATURE (ΔT) WITH AMPLITUDE RATIOS (WMAX/H) FOR BI,[ (I =1,...,8 & 7, 8) = 0.10] ON 

THE DIMENSIONLESS EXPECTED MEAN (NL) AND COEFFICIENT OF VARIATIONS (NL2) OF NONLINEAR FUNDAMENTAL FREQUENCY OF ANTI 

SYMMETRIC CROSS-PLY [00/900]2T LAMINATED COMPOSITE PLATE. PLATE THICKNESS RATIO (A/H =20). L IS LINEAR FUNDAMENTAL FREQUENCY. 

a/b Wmax/h 

δT=100 δT=200 

Mean 

nl 

COV, nl2 

Mean 

nl 

COV, nl2 

bi, i=1,..,8 bi, i=7,8 bi, i=1,..,8 bi, i=7,8 

 

1 

0.3 

0.6 

0.9 

l 

16.3874 

16.6736 

17.1318 

(16.2901) 

0.0911 

0.0894 

0.0871 

0.0068 

0.0066 

0.0062 

16.0424 

16.3225 

16.7711 

(15.9471) 

0.1028 

0.1008 

0.0979 

0.0142 

0.0137 

0.0130 

 

 

1.5 

0.3 

0.6 

0.9 

l 

28.3766 

28.7415 

29.3361 

(28.2594) 

0.0954 

0.0944 

0.0926 

0.0083 

0.0080 

0.0077 

27.7791 

28.1364 

28.7185 

(27.6644) 

0.1092 

0.1079 

0.1057 

0.0172 

0.0168 

0.0161 

The effect of uniform constant temperature rise and transverse temperature gradient with amplitude ratios on 

dimensionless mean and coefficient of variations of  thermal post buckling load for   bi,[{(i =1 to 8), (7,8) and (9, 10)} 

= 0.10] of angle ply [±450]2T  laminated  square composite plate resting on elastic foundation subjected to uni-axial 

and bi-axial in-plane compression ,  uniform temperature or transverse temperature gradients (linearly varying 

thickness across the thickness of the plates) , simply supported SSSS (S2)  boundary conditions and  b/h=100 is  

studied in Table (21)&(22). There is decrease in buckling strength of the plate when subjected to uniform in-plane 

temperature induced loading along with in-plane edge compressive loading but in the case of transverse 
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temperature the effect is insignificant. It is expected that the mean post buckling load with TID is more than TD 

case subjected to either under in-plane uniform temperature or combination of transverse temperature gradient 

and uniform constant temperature. Coefficient of variations in the thermal post buckling load with U.T is higher 

than T.T with random change in all system properties. The effects of random foundation parameters and thermal 

expansion coefficients on the coefficient of variations of thermal buckling load resting on either Winkler or 

Pasternak elastic foundations is higher in the U.T condition compared to T.T condition. The thermal post buckling 

load coefficient of variations is higher with the random change in all system properties (whether considered as 

combined or separately). The buckling load coefficient of variations of the laminated plate with random system 

properties subjected to biaxial compression is higher than uni-axial compression however the mean thermal 

buckling temperature shows the opposite effect.  

TABLE 20 EFFECT OF PLATE ASPECT RATIO (A/B), RISE IN TEMPERATURE (ΔT) WITH AMPLITUDE RATIOS (WMAX/H) FOR BI,[ (I =1,...,8 & 7, 8) = 0.10] ON 

THE DIMENSIONLESS EXPECTED MEAN (NL) AND COEFFICIENT OF VARIATIONS (NL2) OF NONLINEAR FUNDAMENTAL FREQUENCY OF ANGLE-PLY 

[±450]2T LAMINATED COMPOSITE PLATE. PLATE THICKNESS RATIO (A/H =20). L IS LINEAR FUNDAMENTAL FREQUENCY. 

a/b Wmax/h 

δT=100 δT=200 

Mean 

nl 

COV, nl2 

Mean 

nl 

COV, nl2 

bi, i=1,..,8 bi, i=7,8 bi, i=1,..,8 bi, i=7,8 

 

1 

0.3 

0.6 

0.9 

l 

22.5777 

24.0681 

26.2722 

(22.0460) 

0.0898 

0.0905 

0.0913 

0.0036 

0.0032 

0.0027 

22.1023 

23.5610 

25.7194 

(21.5819) 

0.0976 

0.0979 

0.0981 

0.0075 

0.0066 

0.0056 

 

 

1.5 

0.3 

0.6 

0.9 

l 

35.8252 

36.6930 

38.0526 

(35.5262) 

0.0935 

0.0924 

0.0908 

0.0052. 

0.0049 

0.0046 

35.0709 

35.9201 

37.2508 

(34.7784) 

0.1034 

0.1020 

0.0999 

 

0.0108 

0.0103 

0.0095 

 

 

TABLE 21 EFFECTS OF TYPE OF COMPRESSION, TEMPERATURE RISE CONDITIONS WITH AMPLITUDE RATIOS (WMAX/H ) FOR BI,[{(I =1 TO 8), (7,8) AND (9, 

10)} = 0.10] ON THE DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF THERMAL POST BUCKLING 

TEMPERATURE OF ANGLE PLY [±450]2T LAMINATED  SQUARE COMPOSITE PLATE RESTING ON WINKLER ELASTIC FOUNDATION (K1=100, K2=0) WITH 

SSSS (S2) BOUNDARY CONDITIONS, SUBJECTED TO IN-PLANE UNI-AXIAL AND BI-AXIAL COMPRESSIONS. PLATE THICKNESS RATIO  (A/H=100). TCRL - 

LINEAR SOLUTION. 

 

Type of 

compression 

 

Conditions 

 

Wmax/h 

(TID) (TD) 

 

Mean 

Tcrnl 

COV, crnl 

 

Mean 

Tcrnl 

COV, crnl 

bi bi 

(i=1,..,8) 
(i=7, 

8) 
(i=9,10) (i=1,.,8) 

(i=7, 

8) 
(i=9,10) 

 

 

uniaxial 

 

U.T 

0.2 

0.4 

0.6 

Tcrl 

0.2736 

0.2917 

0.3042 

(0.2652  ) 

0.6864 

0.6383 

0.4995 

0.5167 

0.4813 

0.3841 

0.0127 

0.0117 

0.0074 

0.1747 

0.1875 

0.1958 

(0.1693) 

1.0411 

0.9699 

0.7709 

0.7371 

0.6873 

0.5516 

0.0128 

0.0119 

0.0077 

 

T.T 

0.2 

0.4 

0.6 

Tcrl 

0.2732 

0.2914 

0.3084 

(0.2648) 

0.6854 

0.6366 

0.4789 

 

0.5159 

0.4801 

0.3694 

0.0126 

0.0117 

0.0069 

0.1745 

0.1874 

0.1953 

( 0.1692) 

1.0402 

0.9684 

0.7735 

0.7365 

0.6863 

0.5534 

 

0.0128 

0.0119 

0.0078 

 

 

 

biaxial 

 

U.T 

0.2 

0.4 

0.6 

Tcrl 

0.1369 

0.1483 

0.1646 

(0.1327) 

0.6874 

0.6338 

0.5696 

0.5173 

0.4777 

0.4303 

0.0127 

0.0117 

0.0105 

 

0.0874 

0.0947 

0.1053 

( 0.0847) 

1.0421 

0.9607 

0.8626 

 

0.7378 

0.6809 

0.6123 

0.0128 

0.0118 

0.0106 

 

T.T 

0.2 

0.4 

0.6 

Tcrl 

0.1368 

0.1482 

0.1646 

( 0.1326) 

0.6871 

0.6335 

0.5692 

0.5171 

0.4775 

0.4300 

0.0127 

0.0117 

0.0105 

0.0874 

0.0947 

0.1053 

( 0.0847) 

1.0419 

0.9605 

0.1053 

0.7377 

0.6807 

0.6121 

0.0128 

0.0118 

0.0106 
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TABLE 22 EFFECTS OF TYPE OF COMPRESSION, TEMPERATURE RISE CONDITIONS WITH AMPLITUDE RATIOS (WMAX/H ) FOR BI,[{(I =1 TO 8), (7,8) AND (9, 

10)} = 0.10] ON THE DIMENSIONLESS EXPECTED MEAN (TCRNL) AND COEFFICIENT OF VARIATIONS (CRNL) OF THERMAL POST BUCKLING 

TEMPERATURE OF ANGLE PLY [±450]2T LAMINATED  SQUARE COMPOSITE PLATE RESTING ON PASTERNAK ELASTIC FOUNDATION (K1=100, K2=10) WITH 

SSSS (S2) BOUNDARY CONDITIONS, SUBJECTED TO IN-PLANE UNI-AXIAL AND BI-AXIAL COMPRESSIONS. PLATE THICKNESS RATIO  (A/H=100). TCRL - 

LINEAR SOLUTION. 

Type of 

compression 
Conditions Wmax/h 

(TID) (TD) 

 

Mean 

Tcrnl 

COV, crnl 

 

Mean 

Tcrnl 

COV, crnl 

bi bi 

(i=1,.,8) 
(i=7, 

8) 
(i=9,10) (i=1..,8) 

(i= 7, 

8) 
(i=9,10) 

 

 

Uniaxial 

 

U.T 

0.2 

0.4 

0.6 

Tcrl 

0.3417 

0.3563 

0.3531 

(0.3339) 

0.5051 

0.5068 

0.3738 

0.3898 

0.3899 

0.2961 

0.0209 

0.0211 

0.0151 

0.2187 

0.2255 

0.2419 

( 0.2135) 

0.8149 

0.7464 

0.7364 

0.5812 

0.5338 

0.5260 

0.0223 

0.0202 

0.0202 

 

T.T 

0.2 

0.4 

0.6 

Tcrl 

0.3411 

0.3481 

0.3519 

(  0.3332) 

0.5065 

0.4560 

0.3554 

0.3908 

0.3546 

0.2831 

0.0210 

0.0187 

0.0143 

0.2185 

0.2240 

0.2298 

(0.2133) 

0.8144 

0.7283 

0.6699 

0.5809 

0.5215 

0.4809 

0.0223 

0.0197 

0.0179 

 

 

biaxial 

 

U.T 

0.2 

0.4 

0.6 

Tcrl 

0.1712 

0.1826 

0.1989 

( 0.1670) 

0.5389 

0.5047 

0.4622 

0.4135 

0.3878 

0.3560 

 

0.0225 

0.0211 

0.0193 

0.1095 

0.1168 

0.1274 

(0.1068  ) 

0.8258 

0.7734 

0.7079 

0.5887 

0.5519 

0.5060 

0.0226 

0.0212 

0.5060 

 

T.T 

0.2 

0.4 

0.6 

Tcrl 

0.1712 

0.1825 

0.1989 

( 0.1670) 

0.5386 

0.5044 

0.4618 

0.4134 

0.3876 

0.3557 

0.0225 

0.0211 

0.0193 

0.1095 

0.1168 

0.1274 

( 0.1068 ) 

0.8256 

0.7731 

0.7076 

0.5886 

0.5517 

0.5058 

0.0226 

0.0212 

0.0194 

 

TABLE 23 EFFECT OF RISE IN TEMPERATURE (ΔT), PLATE THICKNESS RATIOS (A/H), ASPECT RATIOS (A/B) WITH AMPLITUDE RATIOS (WMAX/H) FOR BI, 

[(I =9) = 0.10] ON THE DIMENSIONLESS NONLINEAR EXPECTED MEAN (NL) AND THE COEFFICIENT OF VARIATIONS (NL2) OF FUNDAMENTAL 

FREQUENCY ON ANTI SYMMETRIC ANGLE-PLY [±450]2T LAMINATEDC PLATES. L IS LINEAR MEAN FUNDAMENTAL FREQUENCY. 

a/h a/b Wmax/h 

δT=50 δT=150 

Mean, nl 
COV, nl2 

Mean, nl 
COV, nl2 

bi, i=9 bi, i=9 

 

 

 

 

10 

 

 

1 

0.3 

0.6 

0.9 

l 

15.6203 

15.8696 

16.2120 

(15.5285) 

0.0416 

0.0408 

0.0396 

15.5422 

15.7901 

16.1305 

(15.4509) 

0.0396 

0.0388 

0.0377 

 

 

2 

0.3 

0.6 

0.9 

l 

38.9618 

39.7049 

40.7480 

(38.6935) 

0.0420 

0.0410 

0.0396 

38.7669 

39.5060 

40.5435 

(38.5000) 

0.0385 

0.0376 

0.0364 

 

 

 

 

20 

 

 

 

1 

0.3 

0.6 

0.9 

l 

17.5948 

17.8539 

18.2498 

(17.5060) 

0.0469 

0.0461 

0.0447 

17.2349 

17.4886 

17.8761 

(17.1480) 

0.0408 

0.0402 

0.0392 

0.0392 

 

 

2 

0.3 

0.6 

0.9 

l 

42.0292 

42.8042 

43.9927 

(41.7638) 

0.0422 

0.0408 

0.0391 

41.1693 

41.9279 

43.0911 

(40.9095) 

0.0297 

0.0289 

0.0278 

 

Tables (23) examines the effect of plate thickness ratio (a/h=10 &20) and aspect ratio (a/b=1 and 2) on the 

dimensionless mean and the coefficient of variations for bi, {i = 9} = 0.10 of the nonlinear fundamental frequency 

with amplitude ratio of two layer angle-ply anti-symmetric [±450] laminated composite square plate with simply 

supported SSSS boundary conditions subjected to uniform temperature change (δT = 50 and 150). For the same 

amplitude ratio, aspect ratio and thermal loading, moderately thick square plate (a/h=20) show the largest 

coefficient of variations to random change in lamina plate thickness input variables, while moderately thick 

rectangular plate  laminate shows highest mean dimensionless nonlinear fundamental frequency. Apart from other 

side, at the same amplitude ratio, thickness ratio and thermal loading, rectangular plate (a/b=2) show the largest 

coefficient of variations to random change in lamina plate thickness input variables for small temperature changes 
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(δT = 50). However, when temperature on increasing from (δT = 50) to (δT = 150) the square plate is more sensitive. 

Conclusions 

A C0 nonlinear finite element method in conjunction with Tailor series based mean centered first order 

perturbation technique combined with direct iterative method is developed to examine the second order statistics 

of thermal post buckling load and thermal nonlinear free vibration. The following conclusions can be drawn from 

the limited study. 

The coefficient of variation of thermal post buckling temperature is significant when the plate is supported on 

Winkler and Pasternak elastic foundations. The numerical results are significantly influenced by different 

amplitude ratios, support conditions, plate thickness ratios, aspect ratios and temperature changes. The buckling 

strength of laminated composite plate decreases when subjected to uniform in-plane temperature induced loading 

along with in-plane edge compressive loading.  

The coefficient of variation in thermal post buckling temperature for square plate is less as compared to     

rectangular plate with temperature dependent material properties and resting on Winkler foundation. Moderately 

thick plate shows lower coefficient of variation to random change in all random input variables as compared to 

moderately thin plate.  

The thermal post buckling temperature is significant for plate with simple SSSS (S2) boundary support conditions 

compared to clamped support conditions. Mean and coefficient of variation of Thermal post buckling of the plate is 

more subjected to temperature dependent as compared to temperature independent random system properties. 

Increase in temperature results in decrease in nonlinear mean fundamental frequency and increase in coefficient of 

variation of nonlinear fundamental frequency of the plate . 

Notations 

Aij, Bij, etc :  Laminate stiffnesses 

BB :   Strain-displacement matrix 

a, b :   Plate length and breadth 

bi :   Basic random system properties 

E11, E22 :  Longitudinal and Transverse elastic moduli 

G12, G13, G23 :  Shear moduli 

h :   Thickness of the plate 

Kl :   Linear bending stiffness matrix 

Kg :   Thermal geometric stiffness matrix 

M, m :   Mass and inertia matrices 

NE, NL :  Number of elements, number of layers in the laminated plate 

Nx, Ny, Nxy  In-plane thermal buckling loads 

NN :   Number of nodes per element 

φi   Shape function of ith node 

Qij :   Reduced elastic material constants 

 
 e

 , 
 e

  : Vector of unknown displacements, displacement vector of eth element 

U,  Strain energy due to bending  
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u , v , w :  Displacements of a point on the mid plane of plate 

u, v, w :   Displacement of a point (x, y, z) 

{σ }, { ε} :  Stress vector, Strain vector 

y, x :   Rotations of normal to mid plane about the x and y axis respectively 

x, y, k :   Two slopes and angle of fiber orientation wrt x-axis for kth layer 

x, y, z :   Cartesian coordínales 

 Var( ) :                 Variance 

RVs :   Random variables 

T :   Difference in temperatures 

1,, 2,:    Thermal expansion coefficients along x and y direction  

β1, β2:  Coefficients of hygroscopic expansion along x and y direction. 

Appendix (A) 

   
/ 2

2 3 4 6

/ 2
, , , , , 1, , , , ,

h

ij ij ij ij ij ij ij
h

A B D E F H Q z z z z z dz


  ;           (i,j=1,2,6)    

   
/ 2

2 4

/ 2
, , 1, ,

h

ij ij ij ij
h

A D F Q z z dz


  ;        (i,j=4,5)        
1

e

n
T

b b b b
A

i

K B D B dA


 ;        
1

e

n
T

s s s s
A

i

K B D B dA


  

   0

1

e

n
T

g g g
A

i

K B N B dA


            ,   
1

NE

e

q


   

       1 1 2

1

e

n
T T TT T T T

i b i b i
A

i

F B N B M B P dA


                     

 
1

1

1 1

2 2

2 2

2 2 2 2

, 0 0 0 0 0 0

, 0 0 0 0 0 0

0 , 0 0 0 0 0

0 , 0 0 0 0 0

0 0 , 0 0 0 0

0 0 , 0 0 0 0

0 0 0 , 0 0 0

0 0 0 0 , 0 0

0 0 0 , , 0 0

0 0 0 , 0 , 0

0 0 0 0 , 0 ,

0 0 0 , , , ,

i x

i y

i x

i y

i x

i y

b

i x

i y

i y i x

i x i x

i y i y

i y i x i y i x

D
C

C

C C

C C

C C

C C C C

















 

 

 

   

 
 
 
 
 
 
 



 




  


 
     

 q













 

   

0 0 , 1 0 0 0

0 0 , 0 1 0 0

0 0 0 3 0 3 0

0 0 0 0 3 0 3

i x

i x

sD q





 
 
 
  
 

  

  

, 0 0 0 0 0 0

0 , 0 0 0 0 0

0 0 0 0 0 0 0

, , 0 0 0 0 0

i x

i y

ti

i y i x

B





 

 
 
 
 
 
  

 

 
1

1

1 1

0 0 0 0 0 , 0

0 0 0 0 0 0 ,

0 0 0 0 0 , ,

i x

bi i y

i y i x

C

B C

C C





 

 
 

  
 
 

  
1

1

0 0 , 0 0 0

0 0 , 0 0 0

i x i

si

i y i

C
B

C

 

 

 
  
 

 

0 0 , 0 0 0 0

0 0 , 0 0 0 0

i x

gi

i y

B




 
     

 
,        0

x xy

xy y

N N
N

N N

 
  
 

,     1i tiB B ;    bii btB B ;    2b i siB B ; 

Appendix (B) 

The non-dimensional parameters for elastic foundations used are as follows: 
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22

4 3
1 1 / dk K b E h ;     

22

2 3
2 2 / dk K b E h  . 
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Abstract 

The stability of stiffened composite panels is the primary problem in aircraft design. This work investigates the compressive 

buckling and postbuckling behaviors of a stiffened composite panel with seven hat stringers and three frames. Both the 

compressive experiment and Finite Element（FE） analysis are carried out for the buckling and postbuckling responses of the 

stiffened composite panel under compressive load. A new test setup is designed for the compressive experiment, where the 

transverse deflections of the frame ends are constrained by six in-plane movable jigs when compressive load is applied. The 

Digital Image Correlation (DIC) technique is used to measure the buckling modes and strain distributions of the skin in the 

experiment. The detailed buckling developments are recorded by DIC technique at different load levels. In addition, the strains 

on different sections of the skin and stringers are recorded by strain gauges to monitor the strain changes during the 

postbuckling process. Meanwhile, the nonlinear FE analysis using the Riks method is carried out in Abaqus. The skin, stringers 

and frames are modeled using shell elements. The adhesive bonded joints are simulated by Tie constraints. The bolted joints are 

simulated by the combination of beam elements and distributing coupling elements. The maximum strain criterion is used to 

predict the ultimate failure. The numerical model is validated by comparing the predicted buckling load, buckling mode 

developments and ultimate failure region with the experimental results. 

Keywords 

Stiffened Composite Structures; Buckling; FE Analysis; Mechanical Testing 

Introduction 

The stiffened panels are main structural components to build the aircraft fuselage and wings, because of the lesser 

structural weight penalty of using stiffener than increasing panel thickness. The stability of such panels, when 

subjected to compression or shear loads, is a primary design problem. With increasing use of composite materials 

in aircraft primary structures, the stability of stiffened composite panels has received a lot of research studies from 

the researchers and designers. 

Lots of research work on the metal panel stability has been done both in analysis and experiments, and relatively 

reliable analysis and design methods have been developed. However, the methods for metal panels cannot be 

applied to composite panels directly, as the anisotropic properties of composite materials lead to more complex 

responses of composite panels, such as the bending-extension coupling effects in unsymmetrical laminated plates. 

Many studies by Sundaresan, Singh and Rao indicate that the bending-extension coupling effects may lead the 

laminated plate to buckling in a way similar to the buckling responses of eccentrically loaded plates rather than the 

buckling patterns of bifurcation in stability. For complex stiffened composite panels with multiple stringers and 

frames, the stability problems are quite complicated due to their complex configurations. Various local buckling 

patterns may occur before the global buckling for a stiffened panel, such as the skin local buckling, the stringer 
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local buckling, etc., reported by Stevens, Ricci and Davies, Kong, Lee, Kim and Hong. The postbuckling capability 

significantly influences the structural safety and design. Therefore, it is essential to carry out some studies to 

understand the stability of complex stiffened panels both experimentally and numerically.  

Experimental method is a direct and important way to study the buckling characteristics and postbuckling 

capability of the composite panels, such as the works by Chryssanthopoulos, Elghazouli, and Esong, Simitses, 

Shaw and Sheinman. However, only few published papers are found to focus on the compressive experiments of 

stiffened composite panels. Stevens, Ricci and Davies studied the compressive postbuckling behaviors of I-

stiffened composite panels by the experimental method. Kong, Lee, Kim and Hong conducted the compressive 

experiments on the I- and T-stiffened composite panels. Orifici, Alberdi, Thomson and Bayandor investigated the 

postbuckling behaviors of T-stiffened composite panels under compressive load. Jegley conducted the experiments 

and finite element analysis for the compressive stability of Pultruded Rod Stitched Efficient Unitized Structure 

(PRSEUS) panels which have multiple rod-frames and stiffeners. The stability of stiffened composite panels with 

multiple frames and stiffeners is quite complex. More specific research work is necessary to be performed for better 

understanding such buckling and postbuckling behaviors. In this study, great efforts have been made in the design 

of the equipment and fixtures for the compressive buckling testing of complex stiffened panels, and the support 

conditions of frames have been incorporated into the finite element modeling. Besides, some advanced monitoring 

techniques are employed to observe the buckling development in the experiment. 

The buckling analysis methods of composite panels include the analytical methods and FE methods. The analytical 

methods of buckling analysis mainly focus on the laminated panels with the simple geometries, and they are 

usually not available for complex stiffened panels as the corresponding analytical buckling expressions are 

extremely difficult to be obtained. The FE methods become widely used in stability analysis of the stiffened panels. 

Eigenvalue buckling analysis and nonlinear stability analysis are two FE methods for buckling analysis. The 

Eigenvalue buckling analysis is generally used to estimate the critical load of stiff structures, which exhibit 

bifurcation instability and have very little deformation prior to buckling. For the complex stiffened panels, 

bifurcation buckling may not occur due to the out-of-plane deformations developed from bending-extension 

coupling effects and eccentric loading in some local regions. The out-of-plane deformations may further induce 

serious geometric nonlinearity. Therefore, the nonlinear FE analysis is an acceptable way to investigate the 

buckling and postbuckling behaviors of complex composite panels.  

In this paper, complex composite panels with seven hat stringers and three frames are both studied experimentally 

and numerically. In the experiment, the transverse deflections of the frame ends are constrained by six jigs. These 

jigs can only move in the plane parallel with the skin. The DIC technique is used to monitor the skin deformation 

development at different load levels. Strain gauges are set on different sections of the skin and stringers to monitor 

the buckling point. The numerical analysis is conducted in Abauqs. The skin, stringers and frames are modeled 

using shell elements. The tie constraints are used to join the skin and stringers models together. The bolted joints in 

the structures are modeled by the combination of beam elements and distributing coupling elements. Nonlinear FE 

analysis is performed using the Riks method to predict the postbuckling behaviors of the stiffened composite 

panels. The numerical model is validated by comparing the experimental and numerical results of buckling load, 

buckling mode development and ultimate failure load. 

 
FIG.1 EXPERIMENT LOADING SYSTEM FOR ARBITRARY COMPRESSION-SHEARING RATIO 
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Experiment 

A study on the stiffened composite panel stability is conducted for the understanding of complex stiffened 

 
FIG.2 CONFIGURATION AND DIMENSIONS OF STIFFENED COMPOSITE PANEL

panel stabilities and for the validation of numerical analysis methods. Various stability experiments of the flat and 

curved composite panels are carried out. The compressive buckling experiment of flat stiffened panel in this paper 

is part of the study. In addition to the typical loading conditions such as compressive and shearing loads, the 

mixed compression-shearing loads are also considered in the study. A new experiment loading system has been 

designed as shown in Fig.1. The vertical and horizontal loading elements of the experiment loading system can 

apply compression and shearing loads in coordination. As a result, arbitrary ratio of the mixed compression-

shearing loads could be obtained using this experiment loading system. In this paper, we focus on the compressive 

properties and behaviors of stiffened composite panels. 

The stiffened composite panel consists of the skin, seven hat stringers and three frames, as shown in Fig.2 (a). All 

parts are made of carbon/epoxy composite materials. The thickness of each layer is 0.191mm. The ply sequence of 

the skin is [±45/0/0/90/0]s. The frame includes an L laminate and a C laminate, bolted together, as shown in Fig.2 (b). 

Both of them have 16 plies with lay-ups of [±45/0/0/0/90/ ±45]s. The hat stringer is formed with an Ω laminate of 

[±45/0/0/0/90/±45]s and an inner U laminate of [±45]. The junction parts of stringer are filled with unidirectional 

composite fillers. The stringers and skin are adhesive bonded together. The frames and skin are fastened by 

titanium alloy bolts. The main dimensions of each part are given in Fig.2. 

The mechanical properties of carbon/epoxy composite materials are listed in Table 1. 

The stiffened composite panel is loaded to first buckling under different load cases before loaded to ultimate 

failure in compression. The stiffened composite panel is designed to be suitable for both the compressive and 

shearing load cases. The left and right sides of the skin are extended as the connection regions joined with the 

shearing fixtures. Two pieces of laminates are bonded at the connection regions front and back for reinforcement. 

The reinforced plates have the same lay-up as the skin. The top and bottom ends are potted in aluminum boxes 

filled with resin, as shown in Fig.2. The loading faces of the boxes are machined flat to achieve uniform 

compressive load condition. 

TABLE 1 PROPERTIES OF CARBON/EPOXY COMPOSITE MATERIALS 

Elastic 

Modulus  

/GPa 

E11 E22 G12 v12 - 

164 9.0 4.14 0.32 - 

Failure Strain 

/ με 

ε11t ε11c ε22t ε22c γ2% 

15000 7900 10000 24000 12000 

The experiment setup is shown in Fig.3. The lower end of the specimen is placed on the platform and fixed to the 

platform by two L-jigs and bolts. The compressive load is applied to the upper end of the specimen with a thick 

metal plate. No shearing load is applied by separating the shearing fixtures from the shearing loading element. The 
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frame ends are connected with six out-of-plane supports as shown in Fig.4. The out-of-plane supports can freely 

move in the plane parallel with skin, so that only the transverse deflections of the frame ends are constrained in the 

experiments. 

The DIC technique is used to monitor the displacement and strain responses of the skin in this paper. The DIC 

technique is a non-contact optical technique for measuring the strain and displacement. It works by comparing 

digital photographs of a test piece at different stages of deformation. By tracking blocks of pixels, the system can 

measure surface displacement and build up 2D and 3D deformation vector fields and strain maps. The DIC 

technique is simple to use and accurate for the measurement. It has been widely used in the characterization of 

materials as well as in many practices in civil engineering. 

 
FIG.3 EXPERIMENT SETUP OF STIFFENED COMPOSITE PANELS 

 

 
FIG.4 OUT-OF-PLANE CONSTRAINTS OF FRAME ENDS 

The outer surface of the skin is painted white strewn with black spots as shown in Fig. 3, which would be used to 

measure the displacements and strain fields of the skin by the DIC technique. Meanwhile, the strain gages are 

placed on eight sections of the skin and stringers as shown in Fig.2. Fig.5 gives the setting scheme of strain gauges 

on different sections. Five 0°strain gauges are bonded on each section of the hat stringers. The strain rosette gauges 

are placed on the skin front and back. To make the measuring areas of DIC as continuous as possible, the front skin 

surfaces on Sec. 2, 4, 5 and 7 are free of any gauges. 

The compressive load is applied at a rate of 0.5kN/s until ultimate failure. The strains and DIC photos are recorded 

in every increase of 1.0 kN. The sounds and damages in the experiment are recorded with digital videos for the 

analysis. 

 
(A) STRAIN GAUGES ON SEC. 1, 3, 6, 8 

 
(A) STRAIN GAUGES ON SEC. 2, 4, 5, 7 

FIG.5 THE SETTING SCHEME OF STRAIN GAUGES  
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Numerical Analysis Model 

All composite parts of the specimen are modeled using S4 shell elements in Abaqus. The fixtures for shear 

experiment are also modeled with S4 shell elements. The finite element model mesh is shown in Fig.6. The hat 

stringer models are tied to the skin model to simulate the adhesive bonded joints. The bolts to fasten the L and C 

laminates, skin and frames, and skin and fixtures are simulated using B31 beam elements. The beam element nodes 

are connected to the shell elements using distributing coupling elements. 

 
(A) GLOBAL MODEL                                 (B) LOCAL MODEL 

FIG.6 FINITE ELEMENT MODEL, BOUNDARY AND LOAD OF STIFFENED PANEL IN COMPRESSION 

Figure 6 indicates the boundary and load of the stiffened panel that the finite element model adopts in the analysis. 

The supported end is completely fixed. The nodes of skin and hat stringers in the pot are constrained in transverse 

deflection. A concentrated compressive force of 1750kN is applied on the loading end. 

The geometrically nonlinear analysis associated with the modified Riks method is carried out for the compressive 

buckling and postbuckling process of the stiffened composite panel. The Riks method discovers a single 

equilibrium path in a space defined by the displacement and loading parameters. It is generally used to predict 

unstable, geometrically nonlinear collapse of a structure. A very tight convergence tolerance is set to prevent the 

load floating back because of the existence of local buckling. 

Results and Discussions 

Local Buckling and Postbuckling Behaviors 

Figure 7 shows the out-of-plane deformations of the skin during the loading process obtained by the DIC technique 

and FE method. The bumps are first observed between stringers along the frames. With the load increasing, more 

bumps appear along the frames. When the load increases to 1000 kN, new buckling waves have filled the middle 

area of each bay. The detailed buckling mode is given in Fig. 8. It can be seen that the buckling waves are 

symmetric about the stringers. There are about three and a half of waves in each bay. The predicted buckling shape 

developments agree well with the experiential results. 

To explain the phenomena in Fig.7 that the bumps of the skin first occur near the frames, the detail configurations 

of the stiffened panel are observed. As shown in Fig.9, there are flange extensions in the conjunctions of stringers 

and frames. The laminate thicknesses between two stringers are not uniform along the longitudinal direction. The 

changes of the laminate section near the flange extensions will induce local eccentricity under compression. 

Bending deformations occur as soon as the compressive load is applied in the nearby region such as Point B in 

Fig.9.    

In the middle area marked as Point A in Fig.9, the eccentricity effects decrease. The transverse deflections don’t 

appear obviously until buckling at Point A. 

Figure 10 shows the experimental and numerical load-strain curves of the skin at point C front and back. The point 

C is at the same locations as point A in each bay, as shown in Fig. 6. The strains increase linearly since the 

beginning. When the load increases to a certain level, the curves become nonlinear, which indicate the appearance 

of buckling. The experimental buckling load at point C is about 820 kN. The numerical result is about 850 kN, 
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which is 3.7% higher than the experiment result. 

 
FIG.7 OUT-OF-PLANE DEFORMATION OF THE STIFFENED PANEL UNDER COMPRESSION 

 

 
FIG.9 CONFIGURATION AND EQUIVALENT CONSTRAINT CONDITIONS OF THE LOCAL SKIN 

 

 
(A) EXPERIMENTAL RESULTS 

 
(B) NUMERICAL RESULTS 

FIG.10 LOAD-STRAIN CURVES OF THE SKIN ON BOTH SIDES AT POINT C 
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FIG.11 LOAD-STRAIN CURVES OF THE SKIN ON BOTH SIDES AT POINT B  

As no strain gauges are set at point B in the experiment, there are no experimental load-strain curves at point B 

offered in this paper. The numerical results of load-strain curves at point B are given in Fig.11. The curves become 

nonlinear at about 580 kN. It is about 32% lower than the buckling load at A and C, which indicates that the local 

eccentricity significantly affect the skin first buckling load. 

When local buckling occurs in the skin, the skin may withstand higher load. The local postbuckling capability of 

the skin depends on its support conditions. In the stiffened composite panels, the hat stiffeners act as the local 

support conditions of the skin. According to Fig.9, the local support conditions can be grouped into two categories: 

one is the two-edge simply support condition at points A and C, the other is three-edge simply support condition 

at point B. Because the average strains of the laminate are relative with the in-plane load, they could reflect the 

local load withstood by the skin under compression. To investigate the local postbuckling capability of the skin, the 

average strains at points A, B and C are calculated by 11 11 11( ) 2front back    . It can be seen that, all the average 

strains keep increasing after buckling. The postbuckling capability at point B is much higher than that at points A 

and C due to the stronger support conditions, although the buckling load at point B is lower. The postbuckling 

load at points A and C is around 1050 kN in the experimental, The numerical result is 1170 kN, which is 11.4% 

higher than the experiment load. The average strain of C keeps increasing until the ultimate failure load. As a 

result, the postbuckling loads are about 25% higher than the buckling values at A and C, while above 100% higher 

at B. 

 
FIG.12 LOAD-AVERAGE STRAIN CURVES OF THE SKIN AT POINTS A, B AND C 

Global Buckling and Ultimate Failure 

Figure 13 gives the global deformations of the stiffened panel at 600 kN obtained experimentally and numerically. 

Because the panel section changes at the four corners, the bending neutral axis of the stiffened panel changes. The 

distance between the compressive load and bending neutral axis will cause eccentricity in the stiffened panel. Both 

the experimental and numerical results show that the center of the panel begins to bulge as soon as the 

compressive load is applied. With the compressive load increasing, the effects of the eccentricity decrease due to 

the frame constraints. When the load increases to a certain level, the global buckling appears. The global buckling 

mode at 1200 kN is shown in Fig.14. The buckling mode presents a full sine wave. The frames are at the wave 

nodes. The results indicate that the laterally supported frames divide the stiffened panels and could improve the 

structural stability by decreasing the effective compression length of the panels. 

Figure 15 shows experimental results of load-strain curves of the 1st and 3rd stringers at Sec.6. The flange strain 

curves marked as 1 and 5 become nonlinear first among the five curves, at the load of about 970 kN. At this 
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moment, the curves 2, 3 and 4 are still straight, which means the stringers don’t reach the buckling yet. The 

nonlinearity of curves 2, 3 and 4 indicate the stringer buckling. The buckling loads for the 1st stringer is 1030 kN, 

while for the 3rd stringer is 1110 kN. After buckling, the strains on the 1st stringer increase rapidly, while those on 

the 3rd stringer indicate slight nonlinearity. It reveals that the stringers near the panel edges have lower 

postbuckling capability than that in the center of the panel. 

 
(A) EXPERIMENTAL RESULT                        (B) NUMERICAL RESULT 

FIG.13 GLOBAL DEFORMATION OF THE STIFFENED PANEL AT 600 KN 

 

 
FIG.14 GLOBAL BUCKLING MODE OF THE STIFFENED PANEL AT 1200 KN 

 

 
(A) 1ST STIFFENER 

 
(B) 3RD STIFFENER 

FIG.15 EXPERIMENTAL RESULTS OF LOAD- STRAIN CURVES OF THE 1ST  AND 3RD STRINGERS AT SEC.6 

Figure 16 gives numerical results of load-strain curves of the 1st and 3rd stringers at Sec.6. The numerical curves 

have the similar shapes with the experimental ones. The predicted buckling load of the 1st stringer is 970 kN, 5.8% 

lower than experiment results. The predicted buckling load of the 3rd stringer is 1180 kN, 7.3% higher than 

experiment results. 
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(A) 1ST STIFFENER 

 
(B) 3RD STIFFENER 

FIG.16 NUMERICAL RESULTS OF LOAD- STRAIN CURVES OF THE 1ST AND 3RD STRINGERS AT SEC.6 

The stiffened panel failed in a sudden collapse before any visible local damage is observed. The ultimate failure 

appears between the lower frame and the potted end, as shown in Fig.17(a). The ultimate failure load is 1490kN. 

Fig.17(b) gives the predicted failure region using the maximum strain criterion. The predicted failure location is 

near the fillet, which is the same as the experiment results. 

Conclusions 

The compressive buckling and postbuckling behaviors of a complex composite panel with multiple stringers and 

frames are studied in this paper. The compressive experiment was conducted on a new test setup. The frame ends 

are constrained in the transverse deflection by six in-plane movable jigs. The DIC technique is used to monitor the 

deformation development of the skin at different load levels. The strain gauges are set on the skin and stringers to 

monitor the strain changes in the loading process. The local buckling in the skin was first observed. Due to the 

eccentricity induced by local reinforcement, the buckling load of the skin near the frames is lower than that in the 

middle areas. However, the local postbuckling capability of the skin near the frames is higher than that in the 

middle areas, because of the stronger constraint conditions near the frames. In the middle of each bay, the local 

postbuckling loads of the skin are about 25% higher than their buckling values. Near the frames, the local 

postbuckling loads of the skin are above 100% higher than their buckling values. The global buckling appears 

when the skin becomes instable. The stringers near the panel edges buckling at lower load than those in the center 

of the panel.  

A nonlinear FE model is established for the compressive buckling and postbuckling analysis of the complex 

stiffened composite panel. The structure details including the bonded joints, bolted joints and jigs are modeled. The 

Riks method is used to solve the nonlinear FE model. The predicted local buckling, global buckling and ultimate 

failure are compared with the experiment results. The numerical results show good agreement with experimental 

ones. 

 
(A) ULTIMATE FAILURE IN EXPERIMENT 
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(B) PREDICTED FAILURE IN FINITE ELEMENT MODEL 

FIG.17 EXPERIMENTAL AND NUMERICAL RESULTS OF ULTIMATE FAILURE 
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Abstract 

Present paper investigates the effects of hygrothermomechanical loading and uncertain system environments on flexural and 

free vibration response of shear deformable laminated plates. System parameters such as the lamina material properties, 

coefficients of thermal expansion and coefficients of hygroscopic expansion, lamina plate thickness, geometric property and 

lateral load are modeled as basic random variables. A C0 finite element method in conjunction with the first order perturbation 

technique procedure for the plate subjected to lateral loading and free vibration is employed to obtain the second order 

response statistics of the transverse deflection and natural frequency of the plates. Typical numerical results for the second 

order statistics of the transverse central deflection and free vibration of geometrically linear composite plates subjected to 

uniform temperature distribution are investigated. The performance of the stochastic laminated composite model is 

demonstrated through comparison of mean transverse central deflection and free vibration with those results available in 

literature and standard deviation of the deflection and natural frequency with an independent Monte Carlo simulation before 

data generation. 

Keywords 

Hygrothermomechanical Loading; Uncertain System Properties; Micromechanical Model; Perturbation Technique 

Introduction 

Composite materials are being nowadays widely used in critical structural members such as light weight 

components, ability to tailor structural properties through appropriate lamination scheme for achieving high 

strength and stiffness to weight ratio and with good energy and sound absorption and often also low production 

cast. The structural plates made of the composite material are increasingly used in many industrial applications 

such as aerospace, automotive and shipbuilding industries. The plates are often subjected to vibration and 

combination of lateral pressure in hygrothermomechanical loading environments. The capability to predict the 

structural response which enables a better understanding and characterization of the actual behavior of laminated 

composite plate in terms of structural response when subjected to combined loads is of prime interest to structural 

analysis. 

A considerable volume of literature is available on the static response of geometrically linear and nonlinear 

composite laminated plates under various thermal and mechanical loads or combination of two. Whitney et al. 

[1971] studied the effect of environment on the elastic response of layered composite elates. They used 

deterministic finite element method with macro mechanical model for the buckling, vibration and static bending 

response of laminated composite plates. Sai Ram and Sinha [1991] investigated the hygrothermal effects on the 

bending characteristics of laminated composite plates by using first order shear deformation theory and 

deterministic finite element method. They found that there are appreciable effects of hygrothermal on the bending 
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characteristics of laminated composite plates. Shen [2000, 2002] Non-linear bending of shear deformable laminated 

plates under lateral pressure and thermal loading and resting on elastic foundations and hygrothermal effects on 

the nonlinear bending of shear deformable laminated plates. Lee et al. [1992] analyzed the hygrothermal effects on 

the linear and nonlinear analysis of symmetric angle-ply laminated plates by using deterministic finite element 

macro mechanical model. Patel et al. [2002] investigated the hygrothermal effects on the structural behavior of 

thick composite laminates using higher-order theory. They also used macro mechanical model to find out the 

effects on buckling, vibration and bending response of laminated composite plates. Onkar and Yadav [2003] have 

investigated the non-linear response statistics of composite laminated flat panel with random material properties 

subjected to transverse random loading based on CLT in conjunction with FOPT. Singh et al. [2000] is extended to 

random environments.  They presented C0 linear and nonlinear finite element method (FEM) in conjunction with a 

FOPT to obtain the second order response statistics of bending deflection of laminated composite plate supported 

with and without elastic foundation. They included the transverse shear effects in the system equation using HSDT. 

A few literatures is available on the static linear and nonlinear bending response of laminated composite plates 

using deterministic micromechanical model. Upadhyay et al. [2010] investigated the nonlinear flexural response of 

laminated composite plates under hygro-thermo-mechanical loading using deterministic finite element method 

and micromechanical model. Rajesh et al.[2011, 2012] investigated the hygrothermal effects on the flexural 

response of laminated composite plates with random material properties and nonlinear response. 

Chen and Chen [1988]  investigated the vibrations of hygrothermal elastic composite plates using deterministic 

finite element method. The investigated the different behavior of plates when exposed to moisture and 

temperature environments. Ram and Sinha [1992] investigated the the hygrothermal effects on the free vibration of 

laminated composite plates using deterministic finite element approach with first order shear deformation theory. 

Huang and Zheng [2003,2004] studied the nonlinear vibration and dynamic response of simply supported shear 

deformable laminated plates on elastic foundations and in hygrothermal environments by using deterministic 

finite element approach. Lal A et al.[2009] investigated the Stochastic Nonlinear free vibration response of 

laminated composite plates resting on elastic foundation in thermal environments. Rajesh et al.[2011,2013] studied 

the hygrothermoelastic free vibration response of laminated composite plates resting on elastic foundations with 

random system properties using micromechanical model and nonlinear responses. Zhang et al. [1996] have applied 

the stochastic perturbation method to vector-valued and matrix-valued function for the response and reliability of 

uncertain structures. Liu et al. [1986] developed the probabilistic finite element method (PFEM) for linear and 

nonlinear continua with homogeneous random fields of a one dimensional elastic plastic wave propagation 

problems and a two dimensional plane-stress beam bending problem. Zhang and Ellingwood [1993] examined the 

effect of random material field characteristics on the instability of a simply supported beam on elastic foundation 

and a frame using perturbation technique. 

It is evident from the literature review presented and observations, there is no literature covering the flexural and 

free vibration responses of laminated composite plates, subject to hygrothermo-mechanical loading involving 

randomness in material properties and micromechanical model to the best of the authors’ knowledge. 

In the present study, the stochastic flexural and free vibration responses of laminated composite plates in the 

presence of small random variation in the material variables, taking into account the transverse shear strain using 

higher order shear deformation theory (HSDT) is studied. The C0 finite element method (FEM) and mean centered 

first order perturbation technique (FOPT) is employed to determine the second order statistics (mean and standard 

deviation) of transverse central deflection of laminated composite plates subjected to hygrothermo-mechanical 

loading  with a linearly varying transverse moisture and temperature distribution across the thickness. The 

numerical illustrations concerned the stochastic bending and free vibration responses of laminated composite 

plates for individual random input variables, plate thickness ratio, aspect ratio, boundary conditions; lamina lay up, 

load deflection, fiber volume fraction under different sets of environmental conditions. It is observed that small 

amount of random material properties, coefficient of hygroscopic expansion; coefficients of thermal expansion 

variations and geometric parameters of the composite plate significantly affect the transverse central deflection and 

natural frequency of the laminates. The proposed probabilistic procedure would be valid for small random 
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coefficient of variations compared to their mean values. The condition is satisfied by most engineering materials 

and it hardly puts any limitation on the approach. 

Mathematical Formulations 

Consider geometry of laminated composite rectangular plate of length a, width b, and thickness h, which consists 

of N plies located in three dimensional Cartesian coordinate system (X, Y, Z) where X- and Y-plane passes through 

the middle of the plate thickness with its origin placed at the corner of the plate as shown in Figure. 1. Let  , ,u v w  

be the displacements parallel to the (X, Y, Z) axes, respectively. The thickness coordinate Z of the top and bottom 

surfaces of any kth layer are denoted by Z(k-1) and Z(k), respectively. The fiber of the Kth layer is oriented with 

angle θk to the X- axes. The plate is assumed to be subjected to uniformly distributed transverse static load is 

defined as  ,
o

q x y q . 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE.1. GEOMETRY OF LAMINNATED COMPOSITE PLATE 

Displacement Field Model 

In the present study, the assumed displacement field is based on the Reddy’s higher order shear deformation 

theory [1996], which requires C1 continuous element approximation. In order to avoid the usual difficulties 

associated with these elements the displacement model has been slightly modified to make the suitability for C0 

continuous element [1997]. In modified form, the derivatives of out-of-plane displacement are themselves 

considered as separate degree of freedom (DOFs). Thus five DOFs with C1 continuity are transformed into seven 

DOFs with C0 due to conformity with the HSDT. In this process, the artificial constraints are imposed which 

should be enforced variationally through a penalty approach. 

However, the literature demonstrates that without enforcing these constraints the accurate results using C0 can be 

obtained. The modified displacement field along the X, Y, and Z directions for an arbitrary composite laminated 

plate is now written as [1990]:  
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1 2
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;
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v f z f z
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  



         (1) 

where u , v  and  w  denote the displacements of a point along the (x, y, z) coordinates u, v, and w are 

corresponding displacements of a point on the mid plane. x  and y are the rotations of normal to the mid plane 

about the y-axis and x-axis respectively, with ,x xw  and ,y xw   

  3

1 1 2f z C z C z  ;   3

2 4f z C z  with 2

1 2 41, 4 3C C C h   .                                                  

The displacement vector for the modified models is 
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 
T

y x y xu v w         ,                       (2)   

where, comma (,) denotes partial differential.    

Strain Displacement Relations 

For the structures considered here, the relevant strain vector consisting of strains in terms of mid-plane 

deformation, rotation of normal and higher order terms associated with the displacement for kth layer are as  

     l HT                       (3)   

where l  and HT are the linear strain vectors, hygrothermal strain vector, respectively. 

Using Eq. (3) the linear strain vector can be obtained using linear strain displacement relations [1990], which can be 

written as 
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The hygrothermal strain vector HT is represented as  

                                                                              
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                                                            (7)  

α1, α2 and α12 are coefficients of thermal expansion and β1, β 2 and β 12 are coefficients of hygroscopic expansion 

along the x, y, z direction respectively which can be obtained from the thermal coefficients in the longitudinal (αl) 

and transverse (αt) directions of the fibers using transformation matrix and ΔT is the change in temperature  and 

hygroscopic coefficients in the longitudinal (βl) and transverse (βt) directions of the fibers using transformation 

matrix and ΔC is the change in moisture in percentage  in the plate subjected with uniform moisture (ΔC=C0 in 

percentage) and  temperature (ΔT=T0)  rise (U.T) . 

Stress–strain Relation 

The constitutive law of thermo-elasticity for the materials under considerations relates the stresses with strains in a 

plane stress state for the kth lamina oriented as an arbitrary angle with respect to reference axis for the orthotropic 

layers is given by [1996, 1997, 1992] 

   
k kk
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where  
k

Q ,  
k

 and  
k

  are transformed stiffness matrix, stress and strain vectors of the kth lamina, respectively 

and (αx, αy, αxy), (βxx, βyy, βxy) are the thermal and hygroscopic expansion coefficients along x, y, z, direction, 

respectively which can be obtained from the  thermal coefficients in the longitudinal (αl,) and transverse (αt) 

directions of the fibers using transformation matrix. T (X, Y, Z) is the uniform temperature field distribution. 

Strain Energy of the Plate 

The strain energy () of the laminated composite plate is given by 

    
T

V

1
dV

2
    .                (9)                                

The strain energy as given above can be written as 

l                                (10) 

Where 
l and 

nl are the linear and the nonlinear strain energy respectively which are expressed as 
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Using linear strain displacement relations  the linear elastic strain energy as given in Eq. (11) can be expressed as  
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                     (12) 

Where  l is the linear strain vector at the reference plane, i.e.,z=0 and [D] is the laminate stiffness matrix. 

Strain Energy Due to Hygrothermal Stresses  

The Strain energy (2) storage by hygrothermal (combined temperature and moisture) load is written as 
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           (13)     

where, Nx, Ny and  Nxy are pre-buckling hygrothermal stresses. 

External Work Done 

The potential energy due to distributed transverse static load 
 ,q x y

can be expressed as 

 3 ,  ext q
A

W W q x y w dA            (14)  

where, q(x, y) is the intensity of distributed transverse static load which is defined as  

 
3

22

4
,

QE h
q x y

b
  ,    here Q is represented as uniform lateral load. 

 Kinetic Energy of the Laminate   

The kinetic energy (T) of the vibrating laminated plate can be expressed as  
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where   and    
. . . .

ˆ
T

u u v w are the density and velocity vector of the plate respectively. 

In the present study a C0 nine-noded isoparametric finite element with 7 DOFs per node is employed. For this type 

of element, the displacement vector and the element geometry are expressed as 

   
1 1

;;
NN NN

i i ii
i i

xx 
 

        and       
1

NN

i i

i

y y


                 (16)  

where 
i  is the interpolation function for the ith node,  

i
 is the vector of unknown displacements for the ith 

node, NN is the number of nodes per element and xi and yi are Cartesian Coordinate of the ith node. 

The linear mid plane strain vector can be expressed in terms of mid plane displacement field and then the energy is 

computed for each element and then summed over all the elements to get the total strain energy Following this, 

and using Eq. (16), can be written as 
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where, NE is the number of elements and U(e) is the elemental total potential energy which can be expressed as 
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with 

     l b sK K K   

where global bending stiffness matrix [Kb], shear stiffness matrix[Ks], global displacement vector {q}and 

hygrothermal load vector [F] are defined as appendix. 

Work Done Due to External Transverse Load 

Using finite element model equation may be written as 

 
22

1

NE
e

e

   ,     
 

 
 

   
 

 
 

3 e

e T e e T ee

M M
A

P dA q P                           (19)  

Adopting Gauss quadrature integration numerical rule, the element stiffness and geometric stiffness, hygrothermal 

and mechanical load respectively can be obtained by transforming expression in x, y coordinate system to natural 

coordinate system , . 

Governing Equations  

The governing equation for the static analysis can be derived using Variational principle [Reddy1997] which is 

generalization of the principle of virtual displacement. The equation does not change in the random 

environment .This gives  

    Δ(USE + UTH - W)= 0         (20)  

The governing equation for hygrothermal free vibration analysis of the laminated plate can be derived using the 

Lagrange’s equation of motion *26+ in terms of global matrices. This gives   
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                                                            (21a)  

where  
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{q},[Kl],[M] and λHT are defined as the global displacement vector, the global linear stiffness matrix, the global 

mass matrix and  the critical hygrothermal buckling parameter respectively. The above equation can be expressed 

in the form of linear generalized eigen value problem for hygrothermal linear free vibration as:    

 [ ] [ ]{ }K q M q                        (22a)  

Substituting equations. one obtains as  

    ,K q F                 with                 M TF P P                                (22)  

where [Kl] , and [PM] and [PT]  are defined in appendix.                                                                                                         

The stiffness matrix [K] is random in nature, being dependent on the hygrothermo-elastic properties. Therefore the 

eigenvalues and eigenvectors also become random. The Eq. (22) can be solved with the help of perturbation 

technique or Monte Carlo simulation (MCS) to obtain the mean and variance of the transverse central deflection.  

Solution Approach –Perturbation Technique 

In the present analysis, the lamina material properties are treated as independent random variables (RVs).  The 

governing equation (22) can be written in the most general form as:  

   R R
ij i iK W F  

 
              (23)  

where
R

ijK    , 
R

iW     and  iF are represented as the random stiffness matrix, the random response vector and 

the deterministic forcing vector. Here 
R

sijK    are the known functions of a set of primary RVs
R

ib   and 
R

iW    is 

unknown and treated as random, also being dependent on RVs
R

ib   . 

In the present study, our aim is to find the second order statistics of 
R

iW    when the second order statistics of 

primary RVs 
R

ib    are known. Any random variable can be expressed as the sum of its mean and the zero mean 

random variable which is expressed .The expression only up to the first-order terms and neglecting the second- 

and higher-order terms are given as random variable  RRV =mean  dRV + zero-mean random variable  rRV  

The operating random variables in the present case are defined as: 

R d r
i i ib b b  ; R d r

sij sij sijK K K  ; R d r
i i iW W W                    (24)  

We can express the above relations in the form: 

R d r

i i ib b b  ; R d r
sij sij sijK K K  ; R d r

i i iW W W            (25)  

where   is a scaling parameter, and is small in magnitude. We consider a class of problems where the zero-mean 

random variation is very small as compared to the mean part of random variables. i.e., 
d rRV RV . Using the 

Taylor series expansion and neglecting the second and higher-order terms since first order approximation is 

sufficient to yield results with desired accuracy with low variability which are the cases in most of the sensitive 

application. Substituting Eq. (25) in Eq. (23) we get:        

   d r d r
sij sij i i iK K W W F   

 
;                       (26)  

Equating the terms of same order, we obtain the zeroth order perturbation equation and first order perturbation 

equation as follows [21]. 

Zeroth order perturbation equation ( Flexural) 

 0 :           d d
sij i iK W F  

 
              (27)  

Zeroth order perturbation equation (Free Vibration) 
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  [ ] [ ]{ }d d d

i iK q M q                                 (27a)  

First order perturbation equation (Flexural) 

 1 :            d r r d
sij i sij i iK W K W F    

  
                          (28)  

 First order perturbation equation (Free Vibration) 

     [ ] [ ] [ ]{ } [ ]d r r d r d d r

i i i i i iK q K q M q M q                      (28a)  

Using this Eq. (28a) can be decoupled and the expression for hygrothermal free vibration is obtained. Eq. (27, 27a) 

is the deterministic equation relating to the mean response, which can be determined by conventional solution 

procedures Eq. (28, 28a) is the random equation, defining the stochastic nature of the bending characteristics  and 

free vibration which cannot be solved using conventional method. For this a further analysis is required.  

Using Taylor’s series expansion the system matrix and response vector can be expressed as; 

d
sijr r

sij lR
l l

K
K b

b


  
  

 ,
d

r i r
i lR

l l

W
W b

b


   


              (29) 

 Substituting Eq.(29) in Eq.(28)and equating the coefficients of
r

lb . 

   0

dd
sijd dl

sij iR R
l l

KW
K W

b b

                 

, l = 1, 2<               (30)  

Using Eq. (25) we can solve the only unknown
d

l
R

l

W

b

  
 
  

, for each l . So the sensitivity matrix of eigenvectors can be 

found out.  

The total deflection response and its variance can be written as:  

d
d rl

lr

l

w
W W b

b

 
   

 
  and var  

2
d

rl
lR

l l

W
W E b

b

 
 

  
                         (31) 

Where E [ ] is the expectation. The variance can be written as:  

The total free vibration response and its variance can be written as:  

var    ,

T
d dN N

l l r r
l lR R

l l l l

W W
W diag E b b

b b

     
      

                         (32)  

  , ,
1 1 1

; ; ;,d d d

i j j i j j j i

q p q
r r r r r r

i i
j j j

b q q b K K b 
  

                               (33)  

Using the above and decoupled equations, the expressions for 1 ,

d

i j  is obtained. 

Using Eq. (33) the variances of the Eigen values can now be expressed as 

   1 , 1 ,1
1 1

,d d

i j i k

p p
r r

ji k
j k

Var Cov b b  
 

                                  (34)  

where  ,r r
j k

Cov b b  is the cross variance between r
jb and r

k
b .The standard deviation (SD) is obtained by the 

square root of the variance [26].  

Numerical Results and Discussions 

A finite element code in MATLAB environment is developed to compute the second-order statistics (expected 

mean and coefficient of variations). The stochastic finite element method (SFEM) approach outlined for the static 
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bending and free vibration response of the laminated composite plates, subjected to uniform moisture and 

temperature changes with among all random input variables including material properties,  coefficients of 

hygroscopic expansion   and coefficients  of thermal expansion and load deflections has been illustrated through 

numerical examples. The approach has been validated by comparing the results with those available in literatures 

and independent Monte Carlo simulation. A nine noded Lagrangian isoparametric element with 63 degrees of 

freedom (DOFs) for the present HSDT model has been used for discretizing the laminate. Based on convergence 

study, a (5×5) mesh has been used. The influence of scattering in the system properties on the static bending and 

free vibration in the following text has been examined for the laminated composite plate with various moisture and 

temperature increments. The mean and standard deviation of the static bending and natural frequency are 

obtained considering the all random input variables and coefficients of hygroscopic expansion   as well as thermal 

expansion coefficients taking separately as basic random variables (RVs) as stated earlier. However, the results are 

only presented taking coefficient of variations of the system property equal to 0.10 [22].  as the nature of the SD 

(Standard deviation) variation is linear and passing through the origin. The basic random variables such as E11, E22, 

G12, G13, G23, υ12, α1, α2, β2 , h and Q are sequenced and defined as:  

b1= E11, b2=E22, b3=G12, b4= G13, b5=G23,  b6=v12, b7=α1, b8=α2, b9= β2 , b10=h and  b11=Q. 

The following dimensionless linear load deflection parameters have been used in this study:   4 4

22Q  q b / E h . The 

following dimensionless linear fundamental frequency and thermal buckling load parameters have been used in 

this study: 2

22( / ) /da E h           

The dimensionless parameters used are as follows:  T=T0+ΔT; where T= total temperature, T0 = Initial Temperature, 

ΔT = rise in temperature. C=C0+ΔC where C= total moisture concentration, C0= Initial moisture concentration, ΔC=  

rise in moisture concentration.  

The following material properties are used for computation Shen [2002]. 

T0=25; C0=0; ΔT=00; ΔC=0.0; Vf=0.5; Ef=230.0*1e9; Gf=9.0*1e9; cfm=0; ρc=1.5; vf=0.203; αf=-0.54*1e-6; ρf=1750; cfm=0; 

vm=0.34; αm=45*1e-6; ρm=1200; βm=2.68*1e-3; βf=0; Em=(3.51-0.003*T-0.142*C)*1e9; Gm=Em*(2*(1+vm))^(-1),  

E10=(Vf*Ef+Vm*Em). 

Coefficients of thermal expansion and hygroscopic expansion are expressed as Shen [2002] and Hunget al.[2004]. 

11

f f f m m m

f f m m

V E V E

V E V E

 






 , 

22 12 11(1 ) (1 )f f f m m mV V           , 
11

11( )

f f f m f m m m

f f fm m m

V E c V E

E V c V

 
 

 





,           

22 12 11

(1 ) (1 )

( )

f f fm f m m m

f f fm m m

V c V

V c V

   
   

 

  
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
, 

2 2

22

2
1

fm
f m f m

f f mm

f m

f m f f m m

EE
V

V E EV
V V

E E E V E V E

   

  


, 
f f m mV V     ,

11 f f m mE V E V E   

12

1 f m

f m

V V

G E G
  ,  

12 f f m mV V    , 1m fV V   

Temperature  Independent  Material  Properties (TID) 

E111=0;     E21=0; G121=0; G131=0; G231=0; α11=0; α21=0; β11=0; β21=0; 

Temperature  Dependent  Material  Properties (TD) 

E111=-0.5*1e-3;    E21=-0.2*1e-3;    G121=-0.2*1e-3;    G131=-0.2*1e-3;    G231=-0.2*1e-3;  

α11=0.5*1e-3; α21=0.5*1e-3;    β11=0.5*1e-3;    β21=0.5*1e-3;  

E1=(E10*(1+E111*(T+C); E2=(E20*(1+E21*(T+C); G12=(G120*(1+G121*(T+C);  

G13=(G130*(1+G131*(T+C); G23=(G230*(1+G231*(T+C); α1=α110*(1+α11*T); 

α2=α210*(1+α21*T); β1=β1*(1+β11*C); β2=β2*(1+β21*C); 
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The boundary conditions for simply supported, clamped and combination of both used for the present analysis are 

given as Figure 2. 

 All edges simply supported (SSSS): 

 0, 0, ; 0 0,y y x xv w at x a u w at y b              

All edges clamped (CCCC):  

0, 0, 0, ;x y x yu v w at x a and y b             

Two opposite edges clamped and other two simply supported (CSCS): 

0, 0 0;x y x yu v w at x and y            0, 0,y y x xv w at x a u w at y b             ; 

 

FIGURE.2 SCHEMATIC OF VARIOUS BOUNDARY CONDITIONS FOR THE PLATE 

TABLE 1 COMPARISON OF  HYGROTHERMAL EFFECTS ON THE LINEAR AND NONLINEAR BENDING BEHAVIOR OF (±450)2T   LAMINATED      SQUARE 

PLATE   LOAD DEFLECTION Q WHERE   Q= Q B4/E22H4, FIBER VOLUME FRACTION (VF) =0.6, PLATE THICKNESS RATIO (A/H) =10, SIMPLE SUPPORT 

SSSS(S2) BOUNDARY CONDITIONS. 

 

Q 

Non-dimensional Hygrothermal static bending load 

Shen [2002] Present Shen [2002] Present 

ΔT=100, ΔC=1% ΔT=100, ΔC=1% ΔT=200, ΔC=2% ΔT=200, ΔC=2% 

 Non-linear Linear Non-linear Non-linear Linear 
Non-

linear 

100 0.6683 1.1707 0.6685 0.6483 1.0431 0.6444 

150 0.8248 1.3954 0.8262 0.7716 1.2400 0.7744 

200 0.9296 1.5242 0.9171 0.8583 1.3435 0.8406 

X 

Y 

Y 

X X 

SSSS 

CCCC CSCS 

 

 

0,
x x

u w     

 

0,
y y

v w     

 

 

 

0,
y y

v w       

 

a 

b b 

a 

0,
x x

u w     

 

b 

a 

Y 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
y

x y x

u v w 

  

  

  

 
0,

y y
v w       

 

0,
x x

u w     

 

0,
y y

v w       



Effects of Hygrothermomechanical Loading and Uncertain System Environments                                  49 

   

Validation  Study for  Random  Hygrothermal  Static  Bending Load 

Comparison for present [FOPT] with present [MCS] for material property (E11) plate thickness ratio (a/h=10), 

geometric property (h ) plate thickness ratio (a/h=30),  aspect ratio (a/b=1), expected mean (W0l)=1.0431, ΔT=2000C, 

ΔC=2%, simple support SSSS (S2), angle ply (±450)2T, fiber volume fraction (Vf=0.6), load deflection Q = q b4/E22h4 

=100.Present[FOPT] results are in good agreement with present [MCS] results as shown in Figure 3.    

Table 2. shows the effects of the variation of individual random system property bi, [{(i =1 to 11), = 0.10] on the 

dimensionless expected mean (W0l) and coefficient of variation (Wl) of hygrothermally induced central deflection 

of angle ply (±450)2T  square laminated composite plates in-plane bi-axial compression, a/h=20, with simple 

support S2 boundary conditions. The dimensionless mean load deflections are given in brackets.  Dimensionless 

deflection load (Q)= q b4/E22h4 =100 and fibre volume fraction (Vf =0.6).  It is noticed that expected mean (W0l) 

value of individual random variables of hygrothermal deflection decreases with increase of temperature and 

moisture conditions. The expected mean (W0l) further increases for TD material properties, the coefficient of 

variation (Wl) of hygrothermal deflection increases on rise in temperature and moisture concentration for both TID 

and TD material properties.  
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(a) Material Property (E11)                                             (b) Geometric Property (h) 

 FIGURE 3. Comparison of the present [DISFEM] results with independent Monte Carlo simulation results for flexural    response. 

 

TABLE 2 EFFECTS OF THE VARIATION OF INDIVIDUAL RANDOM SYSTEM PROPERTY BI, [{(I =1 TO 11), = 0.10] ON THE DIMENSIONLESS EXPECTED MEAN 

(W0L) AND COEFFICIENT OF VARIATION (WL) OF HYGROTHERMALLY INDUCED CENTRAL DEFLECTION OF ANGLE PLY (±450)2T SQUARE LAMINATED 

COMPOSITE PLATES, IN-PLANE BI-AXIAL COMPRESSION, A/H=20, WITH SIMPLE SUPPORT S2 BOUNDARY CONDITIONS. THE DIMENSIONLESS MEAN LOAD 

DEFLECTIONS ARE GIVEN IN BRACKETS.  DIMENSIONLESS DEFLECTION LOAD (Q)= Q B4/E22H4 =100 AND FIBRE VOLUME FRACTION (VF =0.6).   

bi 

(TID) (TD) 

COV, Wl, COV, Wl, 

ΔT= 00C 

ΔC= 0.0 

ΔT=1000C 

ΔC=0.01 

ΔT 2000C 

ΔC=0.02 

ΔT =3000C 

ΔC= 0.03 

ΔT =00C 

ΔC=0.0 

ΔT =1000C 

ΔC=0.01 

ΔT =2000C 

ΔC= 0.02 

ΔT 

=3000C 

ΔC= 0.03 

E11   (i=1) 

 

(0.8359) 

1.70e-04 

(0.6223) 

1.36e-04 

(0.4821) 

1.09e-04 

(0.3832) 

8.65e-05 

(0.8400) 

1.70e-04 

(0.6319) 

1.35e-04 

(0.4882)  

1.06e-04 

(0.3820) 

7.95e-05 

E22 (i=2) 0.0026 6.65e-05 2.44e-04 2.82e-04 0.0012 8.10e-04 1.58e-04 2.61e-04 

G12(i=3) 2.74e-07 6.60e-07 1.20e-06 1.92e-06 2.75e-07 6.94e-07 1.35e-06 2.33e-06 

G13 (i=4) 3.02e-05 3.08e-05 3.44e-05 4.10e-05 3.01e-05 3.02e-05 3.39e-05 4.15e-05 

G23(i=5) 1.51e-05 1.54e-05 1.72e-05 2.05e-05 1.50e-05 1.51e-05 1.69e-05 2.07e-05 

v12(i=6) 0.0162 9.58e-04 1.44e-04 4.69e-05 0.0082 0.0050 4.52e-04 1.27e-04 

α11 (i=7) 7.20e-09 8.83e-09 1.03e-08 1.19e-08 7.27e-09 9.21e-09 1.10e-08 1.29e-08 

α22 (i=8) 7.85e-08 6.16e-08 5.01e-08 4.17e-08 7.97e-08 6.62e-08 5.66e-08 4.92e-08 

β2(i=9) 1.50e-05 1.17e-05 9.57e-06 7.95e-06 1.51e-05 1.19e-05 9.72e-06 8.06e-06 

h (i=10) 0.0011 0.0010 8.97e-04 7.24e-04 0.0011 0.0010 8.87e-04 6.86e-04 

Q(i=11) 2.53e-04 2.66e-04 2.81e-04 2.97e-04 2.53e-04 2.68e-04 2.87e-04 3.12e-04 
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Effects of plate thickness ratios (a/h) with random input variables bi, [{(i =1..9), (7..9),(10) and (11)} = 0.10]  on the 

dimensionless expected mean (W0l) of hygrothermally induced central deflection of angle ply  (±450)2T square 

laminated composite plate subjected to in-plane bi-axial compression  with simple support S2 boundary conditions. 

Dimensionless deflection load Q = 100 and fibre volume fraction (Vf =0.6) as shown in Table 3. It is seen that on 

variations of thickness ratio the mean (W0l) hygrothermal deflection decreases when thickness ratio is increased; 

however it is higher for TD conditions, whereas coefficient of variation (Wl) of hygrothermal deflection decreases 

with different combinations of input random variables it is further higher for TD conditions as shown in Figure.4. 

TABLE 3 EFFECTS OF PLATE THICKNESS RATIOS (A/H) WITH RANDOM INPUT VARIABLES BI, [{(I =1..9), (7..9),(10) AND (11)} = 0.10]  ON THE 

DIMENSIONLESS EXPECTED MEAN (W0L) OF HYGROTHERMALLY INDUCED CENTRAL DEFLECTION OF ANGLE PLY  (±450)2T SQUARE LAMINATED  

COMPOSITE PLATE SUBJECTED TO IN-PLANE BI-AXIAL COMPRESSION  WITH SIMPLE SUPPORT S2 BOUNDARY CONDITIONS. DIMENSIONLESS DEFLECTION 

LOAD Q = 100 AND FIBRE VOLUME FRACTION (VF =0.6). 
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FIGURE. 4  RANDOM COV RESULTS FOR FLEXURAL RESPONSE 

Table 4. Presents the effects of  aspect ratios (a/b) with random input variables bi, [{(i =1 to 9), (7..9),(10) and (11)} = 

0.10]  on the dimensionless expected mean (W0l) of hygrothermally induced central deflection of angle ply 

 

a/h 

(TID) (TD) 

Mean, W0l Mean, W0l 

ΔT= 00C,  ΔC= 0.0 ΔT =1000C, ΔC =0.01 ΔT= 00C, ΔC= 0.0 ΔT =1000C, ΔC =0.01 

5 3.1159 2.8971 3.1210 2.9195 

10 1.3280 1.1707 1.3327 1.1894 

30 0.6965 0.4030 0.6996 0.4031 

50 0.4965 0.1362 0.4973 0.1266 
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(±450)2T laminated composite plates subjected to in-plane bi-axial compression with simple support S2 boundary 

conditions , plate thickness ratio (a/h=40), dimensionless deflection load Q = 100 and fibre volume fraction (Vf =0.6). 

It is noticed that on increase of aspect ratio the mean (W0l) hygrothermal deflection value increases whereas 

coefficient of variation (Wl) of hygrothermal deflection decreases for all different combinations of input random 

variables, mean and COV are higher for TD conditions as shown in Figure.5. 

TABLE 4 EFFECTS OF  ASPECT RATIOS (A/B) WITH RANDOM INPUT VARIABLES BI, [{(I =1 TO 9), (7..9),(10) AND (11)} = 0.10]  ON THE DIMENSIONLESS 

EXPECTED MEAN (W0L) OF HYGROTHERMALLY INDUCED CENTRAL DEFLECTION OF ANGLE PLY (±450)2T LAMINATED COMPOSITE PLATES SUBJECTED 

TO IN-PLANE BI-AXIAL COMPRESSION WITH SIMPLE SUPPORT S2 BOUNDARY CONDITIONS , PLATE THICKNESS RATIO (A/H=40), DIMENSIONLESS 

DEFLECTION LOAD Q = 100 AND FIBRE VOLUME FRACTION (VF =0.6). 
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FIGURE. 5. RANDOM COV RESULTS FOR FLEXURAL RESPONSE 

Effects of support conditions with random input variables bi, [{(i =1 to 9), (7..9),(10) and (11)} = 0.10]  on the 

dimensionless expected mean (W0l) of hygrothermally induced central deflection, plate thickness ratio (a/h=60), of 

angle ply (±450)2T laminated  square composite plates subjected to in-plane bi-axial compression. Dimensionless 

 

a/b 

(TID) (TD) 

Mean, W0l Mean, W0l 

ΔT= 00C,  ΔC= 0.0 ΔT =1000C, ΔC =0.01 ΔT= 00C, ΔC= 0.0 ΔT =1000C, ΔC =0.01 

1.0 0.5942 0.2480 0.5962 0.2417 

1.5 1.4122 0.8405 1.4190 0.8471 

2.0 2.2301 1.5071 2.2416 1.5305 
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deflection load Q = 100 and fibre volume fraction (Vf =0.6) is shown in Table 5. It is noticed that combined simple 

support and clamped support CSCS have significance effects on mean (W0l) hygrothermal deflection with different 

combinations of input random variables under environmental conditions. However the coefficient of variation (Wl) 

of hygrothermal deflection also varies accordingly under given environmental conditions and different 

combinations of input random variables as shown in Figure.6. 

TABLE 5 EFFECTS OF SUPPORT CONDITIONS WITH RANDOM INPUT VARIABLES BI, [{(I =1 TO 9), (7..9),(10) AND (11)} = 0.10]  ON THE DIMENSIONLESS 

EXPECTED MEAN (W0L) OF HYGROTHERMALLY INDUCED CENTRAL DEFLECTION, PLATE THICKNESS RATIO (A/H=60), OF ANGLE PLY (±450)2T 

LAMINATED  SQUARE COMPOSITE PLATES SUBJECTED TO IN-PLANE BI-AXIAL COMPRESSION. DIMENSIONLESS DEFLECTION LOAD Q = 100 AND FIBRE 

VOLUME FRACTION (VF =0.6) 
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FIGURE. 6. RANDOM COV RESULTS FOR FLEXURAL RESPONSE 

Table 6. Presents the effects of lamina lay-up with random input variables bi, [{(i =1 to 9), (7..9),(10) and (11)} = 0.10]  

on the dimensionless expected mean (W0l) of hygrothermally induced central deflection , plate thickness ratio 

(a/h=50), dimensionless deflection load Q = 100, of laminated  square composite plate, simple support S2 boundary 

conditions subjected to in-plane bi-axial compression and fibre volume fraction (Vf =0.6). It is observed that on 

 

BCs 

(TID) (TD) 

Mean, W0l Mean, W0l 

ΔT= 00C,  ΔC= 0.0 ΔT =1000C, ΔC =0.01 ΔT= 00C, ΔC= 0.0 ΔT =1000C, ΔC =0.01 

SSSS (S1) 0.3993 0.0590 0.3991 0.0481 

SSSS(S2) 0.4027 0.0590 0.4026 0.0483 

CCCC 0.2496 0.1785 0.2506 0.1822 

CSCS 0.4468 0.4526 0.4494 0.4753 
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change of lamina layup the mean (W0l) of hygrothermal central deflection increases significantly for cross ply 

symmetric plates and it is lower for angle ply laminates. The coefficient of variation (Wl) of hygrothermal central 

deflection also decreases for different combinations of input random variables. 

Effects of dimensionless load deflection (Q) with random input variables bi, [{(i =1 to 9), (7..9),(10) and (11)} = 0.10]  

on the dimensionless expected mean (W0l) of hygrothermally induced central deflection , plate thickness ratio 

(a/h=30), angle ply (±450)2T laminated  square composite plate, simple support S2 boundary conditions subjected  

in-plane bi-axial compression.  fibre volume fraction (Vf =0.6). It is seen that on increasing load deflection the mean 

(W0l) hygrothermal central deflection increases in given environmental conditions and different combinations of 

input random variables are shown in Table 7.  The coefficient of variation (Wl) of hygrothermal central deflection 

decreases in similar conditions for both TID and TD conditions as shown in Figure 7. 

TABLE 6 EFFECTS OF LAMINA LAY-UP WITH RANDOM INPUT VARIABLES BI, [{(I =1 TO 9), (7..9),(10) AND (11)} = 0.10]  ON THE DIMENSIONLESS 

EXPECTED MEAN (W0L) OF HYGROTHERMALLY INDUCED CENTRAL DEFLECTION , PLATE THICKNESS RATIO (A/H=50), DIMENSIONLESS DEFLECTION 

LOAD Q = 100, OF LAMINATED  SQUARE COMPOSITE PLATE, SIMPLE SUPPORT S2 BOUNDARY CONDITIONS SUBJECTED TO IN-PLANE BI-AXIAL  

COMPRESSION AND FIBRE VOLUME FRACTION (VF =0.6). 
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                  FIGURE. 7. RANDOM COV RESULTS FOR FLEXURAL RESPONSE 

 

Lay-up 

(TID) (TD) 

Mean, W0l Mean, W0l 

ΔT= 00C,  ΔC= 0.0 ΔT =1000C, ΔC =0.01 ΔT= 00C, ΔC= 0.0 ΔT =1000C, ΔC =0.01 

(±450)2T 0.4965 0.1362 0.4973 0.1266 

(±450)S 0.6040 0.2999 0.6057 0.3013 

[00/900]2T 0.8177 0.3446 0.8190 0.3468 

[00/900] S 0.7343 0.3398 0.7358 0.3404 
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TABLE 7 EFFECTS OF DIMENSIONLESS LOAD DEFLECTION (Q) WITH RANDOM INPUT VARIABLES BI, [{(I =1 TO 9), (7..9),(10) AND (11)} = 0.10]  ON THE 

DIMENSIONLESS EXPECTED MEAN (W0L) OF HYGROTHERMALLY INDUCED CENTRAL DEFLECTION , PLATE THICKNESS RATIO (A/H=30), ANGLE PLY 

(±450)2T LAMINATED  SQUARE COMPOSITE PLATE, SIMPLE SUPPORT S2 BOUNDARY CONDITIONS SUBJECTED TO IN-PLANE BI-AXIAL COMPRESSION AND 

FIBRE VOLUME FRACTION (VF =0.6). 

 .  

 

 

 

Shows the  effects of  fibre volume fraction (Vf) with random input variables bi, [{(i =1 to 9), (7..9),(10) and (11)} = 

0.10]  on the dimensionless expected mean (W0l) of hygrothermally induced central deflection of angle ply(±450)2T 

laminated composite plates subjected to in-plane bi-axial compression with simple support S2 boundary 

conditions , plate thickness ratio (a/h=40)  and  dimensionless deflection load(Q) =100. It is observed that on 

varying fibre matrix volume fraction the mean (W0l) hygrothermal central deflection increases in given 

environmental conditions and different combinations of input random variables whereas  the value of coefficient of 

variation (Wl) of hygrothermal central deflection also varies in similar conditions for both TID and TD conditions 

as shown in Figure 8. 

TABLE 8 EFFECTS OF  FIBRE VOLUME FRACTION (VF) WITH RANDOM INPUT VARIABLES BI, [{(I =1 TO 9), (7..9),(10) AND (11)} = 0.10]  ON THE 

DIMENSIONLESS EXPECTED MEAN (W0L) OF HYGROTHERMALLY INDUCED CENTRAL DEFLECTION OF ANGLE PLY (±450)2T LAMINATED  SQUARE 

COMPOSITE PLATE SUBJECTED TO IN-PLANE BI-AXIAL COMPRESSION  , PLATE THICKNESS RATIO (A/H=40)  AND  DIMENSIONLESS DEFLECTION LOAD(Q) 

=100. 

 

 

 

 

 

 

 

 

Effects of temperature and moisture rise (ΔT, ΔC) , with random input variables bi, *,(i =1 to 9), (7..9),(10) and (11)} 

= 0.10]  on the dimensionless expected mean (W0l) of central deflection, fibre volume fraction (Vf=0.6), plate 

thickness ratio (a/h=20), dimensionless deflection load(Q) =150, of angle ply (±450)2T laminated  square composite 

plate subjected to uniform constant temperature and moisture (U.T) with  in-plane bi-axial compression are shown 

in Table 9. It is noticed that on increasing temperature and moisture the mean (W0l) hygrothermal central 

deflection decreases in given environmental conditions and different combinations of input random variables 

whereas  the value of coefficient of variation (Wl) of hygrothermal central deflection increases in similar conditions 

as shown in Figure 9. 

TABLE 9 EFFECTS OF TEMPERATURE AND MOISTURE RISE (ΔT, ΔC) WITH RANDOM INPUT VARIABLES BI, [{(I =1 TO 9), (7..9),(10) AND (11)} = 0.10]  ON 

THE DIMENSIONLESS EXPECTED MEAN (W0L) OF HYGROTHERMALLY INDUCED CENTRAL DEFLECTION, FIBRE VOLUME FRACTION (VF=0.6), PLATE 

THICKNESS RATIO (A/H=20), DIMENSIONLESS DEFLECTION LOAD(Q) =150, OF ANGLE PLY (±450)2T LAMINATED  SQUARE COMPOSITE PLATE SUBJECTED 

TO UNIFORM CONSTANT TEMPERATURE AND MOISTURE (U.T) WITH  IN-PLANE BI-AXIAL COMPRESSION. 

Environmental conditions Mean, W0l 

 (TID) (TD) 

ΔT= 00C, ΔC= 0.0 1.1548 1.1612 

ΔT=1000C, ΔC= 0.01 0.8754 0.8928 

ΔT=2000C, ΔC= 0.02 0.6860 0.7023 

ΔT= 3000C, ΔC= 0.03 0.5481 0.5581 

ΔT= 4000C, ΔC= 0.04 0.4424 0.4431 

ΔT= 5000C, ΔC= 0.05 0.3578 0.3477 

 

Q 

(TID) (TD) 

Mean, W0l Mean, W0l 

ΔT= 00C,  ΔC= 0.0 ΔT =1000C, ΔC =0.01 ΔT= 00C, ΔC= 0.0 ΔT =1000C, ΔC =0.01 

100 0.6965 0.4030 0.6996 0.4031 

150 1.0128 0.6211 1.0179 0.6262 

200 1.3158 0.8354 1.3228 0.8457 

 

Vf 

(TID) (TD) 

Mean, W0l Mean, W0l 

ΔT= 00C,  ΔC= 0.0 ΔT =1000C, ΔC =0.01 ΔT= 00C, ΔC= 0.0 ΔT =1000C, ΔC =0.01 

0.50 0.5518 0.2224 0.5533 0.2145 

0.55 0.5681 0.2326 0.5699 0.2255 

0.60 0.5942 0.2480 0.5962 0.2417 

0.65 0.6327 0.2699 0.6349 0.2645 

0.70 0.6878 0.3001 0.6904 0.2959 
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FIGURE. 8. RANDOM COV RESULTS FOR FLEXURAL RESPONSE 
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FIGURE. 9. RANDOM COV RESULTS FOR FLEXURAL RESPONSE 
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Validation Study for Mean Hygrothermal Free Vibration Load 

Table 10. Shows the comparison of dimensionless fundamental frequency (l) for perfect (00/900)2T laminated 

square plates plate thickness ratio (a/h=20), aspect ratio (a/b=1.0), where a=0.1, b=0.1, initial temperature (T0=250C), 

simple support S2 under environmental conditions with biaxial compression.. The results are compared with semi 

analytical method of Huang et al. [16] to show the performance of the present formulation. It is obvious from the 

result that present C0 FEM using HSDT approach yields an improved accuracy over semi analytical HSDT of 

Huang et al. [2004]. Also the convergence of present results is found to be excellent. 

TABLE 10 COMPARISON OF DIMENSIONLESS FUNDAMENTAL FREQUENCY (L) FOR PERFECT (00/900)2T LAMINATED SQUARE PLATES. PLATE 

THICKNESS RATIO (A/H=20), ASPECT RATIO (A/B=1.0), WHERE A=0.1, B=0.1, INITIAL TEMPERATURE (T0=250C), SIMPLE SUPPORT S2 UNDER 

ENVIRONMENTAL CONDITIONS WITH BIAXIAL COMPRESSION. 

 

Lay-up 

 

Environmental 

Conditions 

(l)= ωa2√(ρ0/E22/ h2). 

Hung et al.  [2004] Present [HSDT] 

Vf=0.5 Vf=0.6 Vf=0.7 Vf=0.5 Vf=0.6 Vf=0.7 

 

(00/900)2T 

ΔT=00C, ΔC=0% 9.865 10.587 11.331 9.475 10.369 11.319 

ΔT=1000C, C=1% 8.978 9.704 10.399 9.076 9.970 10.885 

ΔT=2000C, C=3% 7.813 8.502 9.074 7.707 8.169 8.406 

Validation Study for  Random Hygrothermal Free Vibration Load 

Comparison for present [FOPT] with present [MCS] for material property (E11) plate thickness ratio (a/h=30), 

aspect ratio (a/b=1), dimensionless expected mean (W0l) TID=8.6002, TD=8.3419, ΔT=1000C, ΔC=1%, simple 

support SSSS (S2), cross ply (0/900)2T, fiber volume fraction (Vf=0.6), for  geometric property (h) plate thickness 

ratio (a/h=30), dimensionless expected mean (W0l) TID =18.4662, TD=17.5438 ΔT=2000C, ΔC=3%,  . Present [FOPT] 

results are in good agreement with present [MCS] results as shown in Figure 10.  

Table 11(a) and (b). Show the effects of individual  random variables bi, {(i =1 to 10) = 0.10} on the dimensionless 

expected mean (ωl) and coefficient of variation (ωl2) of the fundamental frequency of perfect cross ply (00/900)2T 

laminated composite square plates, plate thickness ratio (a/h=10), fiber volume fraction(Vf=0.6), initial temperature 

(T0=250C) ,  simple support (S2)  under environmental conditions . The dimensionless expected mean fundamental 

frequency (ωl) is given in brackets. All edges simply supported boundary condition subjected to uniform moisture 

& temperature change with temperature & moisture independent and dependent material properties. It is 

observed that for the same fiber volume fraction the fundamental frequency is most affected by random change in 

E11 and v12. Tight control of these parameters is therefore required if high reliability of the plate is desired.  
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FIGURE 10. COMPARISON OF THE PRESENT [DISFEM] RESULT WITH  INDEPENDENT MONTE CARLO SIMULATION RESULTS FREE 

VIBARTION RESPONSE 
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TABLE 11 (A) EFFECTS OF THE VARIATION OF INDIVIDUAL RANDOM SYSTEM PROPERTY BI, {(I =1 TO 10) = 0.10} ON THE DIMENSIONLESS EXPECTED 

MEAN (ΩL) AND COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE 

SQUARE PLATES, PLATE THICKNESS RATIO (A/H=10), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  

UNDER ENVIRONMENTAL CONDITIONS. 

 

 

bi 

(TID) 

COV, ωl2 COV, ωl2 COV, ωl2 COV, ωl2 

ΔT=00C, ΔC=0% ΔT=1000C, ΔC=1% ΔT=2000C, ΔC=3% ΔT=3000C, ΔC=5% 

E11  (i=1) (ωl=8.9741) 0.0545 (ωl=8.9533)  0.0553 (ωl=8.7437) 0.0584 (ωl=8.5511)  0.0615 

E22  (i=2) 0.0179 0.0011 1.5599e-04 4.5393e-05 

G12(i=3) 0.0038 0.0039 0.0041 0.0043 

G13 (i=4) 0.0214 0.0218 0.0225 0.0237 

G23 (i=5) 0.0107 0.0109 0.0113 0.0119 

v12 (i=6) 0.8084 0.0577 0.0104 0.0040 

α11 (i=7) 4.1753e-05 2.9997e-04 7.3495e-04 0.0014 

α22 (i=8) 4.5590e-04 0.0021 0.0036 0.0049 

β22 (i=9) 0.0015 0.0074 0.0127 0.0172 

h (i=10) 0.0111 0.0115 0.0122 0.0133 

 

TABLE 11 （B）EFFECTS OF THE VARIATION OF INDIVIDUAL RANDOM SYSTEM PROPERTY BI, {(I =1 TO 10) = 0.10} ON THE DIMENSIONLESS EXPECTED 

MEAN (ΩL) AND COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE 

SQUARE PLATES, PLATE THICKNESS RATIO (A/H=10), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  

UNDER ENVIRONMENTAL CONDITIONS. 

 

 

bi 

(TD) 

COV, ωl2 COV, ωl2 COV, ωl2 COV, ωl2 

ΔT=00C, ΔC=0% ΔT=1000C, ΔC=1% ΔT=2000C, ΔC=3% ΔT=3000C, ΔC=5% 

E11  (i=1 (ωl=8.9324)0.0546 (ωl=8.7409) 0.0555 (ωl=8.3600) 0.0590 (ωl=7.9892) 0.0625 

E22  

(i=2) 
0.0091 0.0058 5.2485e-04 1.4063e-04 

G12(i=3) 0.0039 0.0041 0.0045 0.0049 

G13 

(i=4) 
0.0213 0.0214 0.0216 0.0219 

G23 

(i=5) 
0.0107 0.0107 0.0108 0.0110 

V12 

(i=6) 
0.0409 0.0302 0.0033 0.0011 

α11 

(i=7) 
4.2135e-05 3.1344e-04 7.9352e-04 0.0015 

α22 

(i=8) 
4.6285e-04 0.0023 0.0041 0.0059 

β22 

(i=9) 
0.0016 0.0075 0.0130 0.0179 

h (i=10) 0.0112 0.0119 0.0131 0.0145 

Table 12(a) and (b). Present the effect of boundary conditions and input random variables bi,i=1<9, 7-8, 9 and 

10=0.10}on the dimensionless expected mean(ωl)  and coefficient of variation (ωl2) of  fundamental frequency of 

perfect cross ply (00/900)2T laminated composite square plates, plate thickness ratio (a/h=20) , fiber volume fraction 

(Vf=0.6), initial temperature (T0=250C) under environmental conditions. It is observed that for temperature and 

moisture independent material properties without rise in moisture and temperature condition expected mean and 

coefficient of variation   of fundamental frequency is significantly affected when the plate is clamped supported 

compared to other supports. On rising moisture and temperature there is decrease in expected mean and 

coefficient of variation   of fundamental frequency. For temperature and moisture dependent material properties, 

there is further decrease in expected mean of fundamental frequency for both without and with rise in moisture 

and temperature conditions and different sets of random input variables as shown in Figure 11.    
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TABLE 12(A)EFFECT OF BOUNDARY CONDITIONS AND  INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10}ON THE DIMENSIONLESS EXPECTED 

MEAN (ΩL) AND COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE 

SQUARE PLATES, PLATE THICKNESS RATIO (A/H=20), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  

UNDER ENVIRONMENTAL CONDITIONS. 

 

BCs 

 

(TID) 

ΔT=00C, ΔC=0% ΔT=2000C, ΔC=3% 

Mean 

(ωl) 

COV, ωl2 
Mean 

(ωl) 

COV, ωl2 

bi bi 

(i=1.....9) (i=7.-8) (i=9) (i=10) (i=1… 9) (i=7.-8) (i=9) (i=10) 

SSSS 

S1 
10.9518 0.1075 0.0012 0.0040 0.0213 7.3899 0.1813 0.0207 0.0663 0.0442 

SSSS 

S2 
10.3699 0.1258 0.0014 0.0045 0.0276 8.1692 0.1313 0.0169 0.0540 0.0443 

CCCC 19.5079 0.0913 4.37e-04 0.0014 0.0140 17.3812 0.0787 0.0043 0.0138 0.0178 

CSCS 14.7273 0.1058 7.53e-04 0.0024 0.0097 12.8666 0.0923 0.0077 0.0246 0.0126 

TABLE 12(B)EFFECT OF BOUNDARY CONDITIONS AND  INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10}ON THE DIMENSIONLESS EXPECTED 

MEAN (ΩL) AND COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE 

SQUARE PLATES, PLATE THICKNESS RATIO (A/H=20), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  

UNDER ENVIRONMENTAL CONDITIONS. 

 

BCs 

 

(TD) 

ΔT=00C, ΔC=0% ΔT=2000C, ΔC=3% 

Mean 

(ωl) 

COV, ωl2 
Mean 

(ωl) 

COV, ωl2 

bi bi 

(i=1.....9) (i=7.-8) (i=9) (i=10) (i=1.. 9) (i=7.-8) (i=9) (i=10) 

SSSS 

S1 
10.8924 0.0847 0.0013 0.0040 0.0213 6.6662 0.2032 0.0267 0.0768 0.0488 

SSSS 

S2 
10.3147 0.0893 0.0014 0.0045 0.0276 7.7014 0.1346 0.0199 0.0571 0.0455 

CCCC 19.4194 0.0696 4.44e-04 0.0014 0.0141 16.5062 0.0805 0.0050 0.0145 0.0190 

CSCS 14.6547 0.0779 7.65e-04 0.0025 0.0097 12.2297 0.0936 0.0089 0.0256 0.0136 
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FIGURE 11. RANDOM COV RESULTS FOR FREE RESPONSE 



Effects of Hygrothermomechanical Loading and Uncertain System Environments                                  59 

   

Table 13 (a) and (b).  show the effect of  plate thickness ratio (a/h) and input random variables bi,i=1<9, 7-8, 9 and 

10=0.10} on the  expected mean (ωl)  and coefficient of variation (ωl2) of  fundamental frequency of perfect cross 

ply (00/900)2T laminated composite square plates,  fiber volume fraction (Vf=0.6), initial temperature (T0=250C) 

under environmental conditions. It is seen that for temperature and moisture independent material properties 

there is drastic change in expected mean and coefficient of variations of fundamental frequency when plate is 

exposed to moisture and temperature conditions. However for  temperature and moisture dependent material 

properties there is decrease in expected mean and coefficient of variations of fundamental frequency with different 

combinations of random input variables as shown in Figure 12.    

TABLE 13(A)EFFECT OF PLATE THICKNESS RATIO (A/H) AND INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10} ON THE  EXPECTED MEAN (ΩL) 

AND COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF  PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE SQUARE 

PLATES,  FIBER VOLUME FRACTION (VF=0.6), INITIAL TEMPERATURE (T0=250C) UNDER ENVIRONMENTAL CONDITIONS. 
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ΔT=00C, ΔC=0% ΔT=2000C, ΔC=3% 
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COV, ωl2 
Mean 

(ωl) 

COV, ωl2 

bi bi 

(i=1- 9) (i=7.-8) (i=9) (i=10) (i=1- 9) (i=7.-8) (i=9) (i=10) 

5 6.4020 0.0801 2.24e-04 7.29e-04 0.0049 6.3686 0.0561 0.0017 5.51e-04 
0.004

6 

10 8.9741 0.1021 4.57e-04 0.0015 0.0111 8.7437 0.0638 0.0037 0.0012 
0.012

2 

50 10.9618 0.1386 0.0077 0.0251 0.0346 8.5356 0.0468 0.04681 0.0150 
0.033

9 

100 11.0246 0.1754 0.0306 0.0994 0.0369 51.9425 0.0539 0.0532 0.0161 
0.018
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FIGURE 12. RANDOM COV RESULTS FOR FREE RESPONSE 
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TABLE 13(B)EFFECT OF PLATE THICKNESS RATIO (A/H) AND INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10} ON THE  EXPECTED MEAN (ΩL) 

AND COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF  PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE SQUARE 

PLATES,  FIBER VOLUME FRACTION (VF=0.6), INITIAL TEMPERATURE (T0=250C) UNDER ENVIRONMENTAL CONDITIONS. 

 

(a/h
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(TD) 

ΔT=00C, ΔC=0% ΔT=2000C, ΔC=3% 

Mean 

(ωl) 

COV, ωl2 
Mean 

(ωl) 

COV, ωl2 

bi bi 

(i=1- 9) (i=7.-8) (i=9) (i=10) (i=1- 9) (i=7.-8) (i=9) (i=10) 

5 6.3787 0.0626 2.27e-04 7.29e-05 0.0049 6.1516 0.0557 0.0019 5.55e-04 0.0044 

10 8.9324 0.0729 4.64e-04 1.49e-04 0.0112 8.3600 0.0641 0.0042 0.0012 0.0131 

50 10.9005 0.0971 0.0079 0.0025 0.0346 8.0246 1.6119 0.2464 0.0699 0.5559 
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FIGURE 13. RANDOM COV RESULTS FOR FREE RESPONSE  
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Table 14(a) and (b).  Effect of aspect ratio (a/b) and input random variables bi,i=1<9, 7-8, 9 and 10=0.10}on the  

expected mean(ωl)  and coefficient of variation (ωl2) of  fundamental frequency of perfect cross ply (00/900)2T 

laminated composite plates, plate thickness ratio (a/h=30),  fiber volume fraction (Vf=0.6), initial temperature 

(T0=250C), simple support S2  under environmental conditions. It is seen that aspect ratio significantly affects the 

expected mean and coefficient of variation of fundamental frequency when plate is without moisture and 

temperature exposure. When the plate is exposed to moisture and temperature there is drastic change in expected 

mean fundamental frequency besides slight rise in coefficient of variation for aspect ratio (1.5). The plate with 

temperature and moisture dependent material properties there is slight change in expected mean and coefficient of 

variation of fundamental frequency with different combinations of random input variables as shown in Figure 13.    

TABLE 14(A)EFFECT OF ASPECT RATIOS (A/B) AND INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10}ON THE EXPECTED MEAN (ΩL) AND 

COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF  PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE SQUARE PLATES, 

PLATE THICKNESS RATIO (A/H=30), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  UNDER 

ENVIRONMENTAL CONDITIONS. 

 

 

a/

b 

(TID) 

ΔT=00C, ΔC=0% ΔT=2000C, ΔC=3% 

Mean 

(ωl) 

COV, ωl2 
Mean 

(ωl) 

COV, ωl2 

bi bi 

(i=1- 9) (i=7.-8) (i=9) (i=10) (i=1- 9) (i=7.-8) (i=9) (i=10) 

0.5 7.1611 0.1154 0.0016 5.28e-04 0.0071 4.9307 0.1561 0.0258 0.0083 0.0148 

1.0 10.7297 0.1325 0.0029 9.42e-04 0.0322 18.4662 0.1829 0.0297 0.0096 0.0097 

1.5 18.5549 0.1310 0.0022 7.09e-04 0.0465 48.3038 0.1504 0.0226 0.0073 0.0063 

2.0 30.6824 0.1284 0.0015 4.61e-04 0.0515 11.7417 0.5765 0.0816 0.0237 0.3565 

 

TABLE 14(B)EFFECT OF ASPECT RATIOS (A/B) AND INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10}ON THE EXPECTED MEAN (ΩL) AND 

COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF  PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE SQUARE PLATES, 

PLATE THICKNESS RATIO (A/H=30), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  UNDER 

ENVIRONMENTAL CONDITIONS. 

 

 

a/b 

(TD) 

ΔT=00C, ΔC=0% ΔT=2000C, ΔC=3% 

Mean 

(ωl) 

COV, ωl2 
Mean 

(ωl) 

COV, ωl2 

bi bi 

(i=1- 9) (i=7.-8) (i=9) (i=10) (i=1- 9) (i=7.-8) (i=9) (i=10) 

0.5 7.1236 0.0850 0.0016 5.30e-004 0.0072 4.6075 0.1628 0.0309 0.0090 0.0165 

1.0 10.6707 0.0940 0.0030 9.46e-004 0.0322 17.5438 0.1846 0.0344 0.0100 0.0112 

1.5 18.4519 0.0948 0.0022 7.12e-004 0.0465 46.9859 0.1454 0.0250 0.0073 0.0075 

2.0 30.5108 0.0950 0.0015 4.63e-004 0.0515 11.5511 0.5377 0.0876 0.0232 0.0330 

Table 15(a) and (b). Effect of  lay-up  and input random variables bi,i=1<9, 7-8, 9 and 10=0.10} on the  expected 

mean (ωl)  and coefficient of variation (ωl2) of fundamental frequency of laminated composite square plates, plate 

thickness ratio (a/h=40),  fiber volume fraction (Vf=0.6), initial temperature (T0=250C), simple support S2  under 

environmental conditions. It is noticed that for both cross ply & angle ply plates the effects of lay-up is less when 

moisture and temperature exposure is not present, but in moisture and temperature exposure there is significant 

change in expected mean and coefficient of variations of fundamental frequency.  However for temperature and 

moisture dependent material properties the value of expected mean and coefficient of variations of fundamental 

frequency are quite increased as shown in Figure 14. 

Table 16(a) and (b).  Effect of fiber volume fraction (Vf) and input random variables bi,i=1<9, 7-8, 9 and 10=0.10}on 

the  expected mean (ωl)  and coefficient of variation (ωl2) of fundamental frequency of perfect cross ply (00/900)2T 

laminated composite square plates plate,  thickness ratio (a/h=40),  fiber volume fraction (Vf=0.6), initial 

temperature (T0=250C), simple support S2  under environmental conditions. With the change of fiber volume 

fraction ,there is no much appreciable change in expected mean and coefficient of variation of fundamental 

frequency when the plate is not exposed to moisture and temperature, but with when the plate is exposed to 
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moisture and temperature environment the effects of fiber volume fraction is quite significant. It is noticed that 

expected mean and coefficient of variation of fundamental frequency decreases on increase of fiber volume fraction 

beyond sixty five percent for both temperature and moisture independent & temperature and moisture dependent 

material properties with different combinations of moisture and temperature as shown in Figure 15. 
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FIGURE 14. RANDOM COV RESULTS FOR FREE RESPONSE  
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FIGURE 15. RANDOM COV RESULTS FOR FREE RESPONSE 
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TABLE 15(A)EFFECT OF  LAY-UP  AND INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10} ON THE  EXPECTED MEAN (ΩL) AND COEFFICIENT OF 

VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF  PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE SQUARE PLATES, PLATE THICKNESS 

RATIO (A/H=40), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  UNDER ENVIRONMENTAL CONDITIONS. 

 

Lay-

up 

(TID) 

ΔT=00C, ΔC=0% ΔT=2000C, ΔC=3% 

Mean 

(ωl) 

COV, ωl2 

Mean 

(ωl) 

COV, ωl2 

bi bi 

(i=1- 9) (i=7.-8) (i=9) (i=10) (i=1- 9) (i=7.-8) (i=9) 
(i=1

0) 

(00/90
0)s 

11.7725 0.0763 3.91e-04 8.19e-04 0.0241 17.8690 0.2889 0.0397 0.0280 
0.05

52 

(00/90
0)T 

10.8800 0.1099 4.58e-04 0.0016 0.0338 21.3689 0.0067 0.0051 0.0036 
0.08

25 

(±450)

s 
13.9617 0.1144 2.87e-04 0.0012 4.36e-04 19.0274 0.0479 0.0204 0.0376 

0.00

42 

(±450)

2T 
14.9053 0.0741 2.44e-04 0.0010 0.0271 20.7776 0.0523 0.0206 0.0409 

0.01

03 

 

TABLE 15(B)EFFECT OF  LAY-UP  AND INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10} ON THE  EXPECTED MEAN (ΩL) AND COEFFICIENT OF 

VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF  PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE SQUARE PLATES, PLATE THICKNESS 

RATIO (A/H=40), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  UNDER ENVIRONMENTAL CONDITIONS. 

 

Lay-

up 

(TD) 

ΔT=00C, ΔC=0% ΔT=2000C, ΔC=3% 

Mean 

(ωl) 

COV, ωl2 
Mean 

(ωl) 

COV, ωl2 

bi bi 

(i=1- 9) (i=7.-8) (i=9) (i=10) (i=1- 9) (i=7.-8) (i=9) (i=10) 

(00/90
0)s 

11.7062 0.0386 3.95e-04 8.23e-04 0.0241 25.7712 0.0893 0.0196 0.0137 
0.015

7 

(00/90
0)T 

10.8196 0.0556 4.63e-04 0.0016 0.0338 19.9578 0.0105 0.0058 0.0038 
0.086

2 

(±450)

s 
13.8852 0.0577 2.90e-04 0.0012 

4.35e-

04 
19.9021 0.2696 0.0720 0.1162  

(±450)

2T 
14.8202 0.0375 2.46e-04 0.0010 

2.71e-

04 
13.2935 0.1559 0.0414 0.0686 

0.013

0 

 

TABLE 16(A)EFFECT OF FIBER VOLUME FRACTION (VF) AND INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10}ON THE  EXPECTED MEAN (ΩL) 

AND COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF  PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE SQUARE 

PLATES, PLATE THICKNESS RATIO (A/H=40), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  UNDER 

ENVIRONMENTAL CONDITIONS. 

 

 

Vf 

(TID) 

ΔT=00C, ΔC=0% ΔT=2000C, ΔC=3% 

Mean 

(ωl) 

COV, ωl2 
Mean 

(ωl) 

COV, ωl2 

bi bi 

(i=1- 9) (i=7-8) (i=9) (i=10) (i=1- 9) (i=7.-8) (i=9) (i=10) 

0.50 9.9403 0.0030 6.57e-04 0.0015 3.39e-04 19.9010 0.0031 3.92e-04 0.0030 8.38e-04 

0.55 10.4098 0.0099 4.95e-05 0.0016 3.38e-04 20.6828 0.0042 0.0025 0.0031 8.39e-04 

0.60 10.8800 0.1099 4.58e-04 0.0016 0.0338 21.3689 0.0067 0.0051 0.0036 0.0825 

0.65 11.3586 0.0032 8.82e-04 0.0017 3.37e-04 21.3152 0.0392 0.0118 0.0136 7.74e-04 

0.70 11.8557 0.0023 0.0012 0.0019 3.35e-04 18.9157 0.0567 0.0213 0.0221 0.0012 

Table 17(a) and (b). Effects of environmental conditions and input random variables bi,i=1<9, 7-8, 9 and 10=0.10}  

on expected mean (ωl)  and coefficient of variation (ωl2) of fundamental frequency of perfect cross ply (00/900)2T 

laminated composite square plates, plate  thickness ratio (a/h=60),  fiber volume fraction (Vf=0.6), initial 
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temperature (T0=250C), simple support S2  under environmental conditions. It is noticed that environmental 

conditions significantly affects the expected mean and coefficient of variation of fundamental frequency of plate 

with different sets for both temperature and moisture independent and temperature and moisture dependent 

material properties. Higher moisture and temperature play significant role for the analysis of plate as shown in 

Figure 16.  
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bi{i=1..9}                                                                          bi{i=7,8} 
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FIGURE 16. RANDOM COV RESULTS FOR FREE RESPONSE 

 

TABLE 16(B)EFFECT OF FIBER VOLUME FRACTION (VF) AND INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10}ON THE  EXPECTED MEAN (ΩL) 

AND COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF  PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE SQUARE 

PLATES, PLATE THICKNESS RATIO (A/H=40), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  UNDER 

ENVIRONMENTAL CONDITIONS. 

 

 

Vf 

(TD) 

ΔT=00C, ΔC=0% ΔT=2000C, ΔC=3% 

Mean 

(ωl) 

COV, ωl2 
Mean 

(ωl) 

COV, ωl2 

bi bi 

(i=1- 9) (i=7-8) (i=9) (i=10) (i=1- 9) (i=7-8) (i=9) (i=10) 

0.50 9.8849 0.0033 6.64e-04 0.0015 3.39e-04 18.6212 0.0034 4.42e-04 0.0032 8.67e-04 

0.55 10.3518 0.0127 5.01e-05 0.0016 3.38e-04 19.3362 0.0049 0.0028 0.0034 8.70e-04 

0.60 10.8196 0.0556 4.63e-04 0.0016 0.0338 19.9578 0.0105 0.0058 0.0038 0.0862 

0.65 11.2956 0.0030 8.92e-04 0.0017 3.36e-04 20.0044 1.5753 0.0129 0.0136 7.89e-04 

0.70 11.7903 0.0023 0.0012 0.0019 3.35e-04 17.5988 0.0360 0.0242 0.0241 0.0013 
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TABLE 17(A )EFFECTS OF ENVIRONMENTAL CONDITIONS AND INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10}  ON EXPECTED MEAN (ΩL) 

AND COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF  PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE SQUARE 

PLATES, PLATE THICKNESS RATIO (A/H=60), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  UNDER 

ENVIRONMENTAL CONDITIONS. 

 

Environmental 

Conditions. 

 

 

Mean 

(ωl) 

(TID) 

COV, ωl2 

bi 

(i=1- 9) (i=7.-8) (i=9) (i=10) 

ΔT=00C, ΔC=0% 11.0115 0.1115 0.0010 0.0036 3.51e-04 

ΔT=1000C, ΔC=1% 9.6617 0.1189 0.0237 0.0866 0.0013 

ΔT=2000C, ΔC=3% 32.8633 0.0515 0.0165 0.0470 4.68e-04 

ΔT=3000C, ΔC=5% 45.0589 0.0114 0.0105 0.0042 0.0012 

 

TABLE 17(B)EFFECTS OF ENVIRONMENTAL CONDITIONS AND INPUT RANDOM VARIABLES BI{I=1<9, 7-8, 9 AND 10=0.10}  ON EXPECTED MEAN (ΩL) AND 

COEFFICIENT OF VARIATION (ΩL2) OF THE FUNDAMENTAL FREQUENCY OF  PERFECT CROSS PLY [00/900]2T LAMINATED COMPOSITE SQUARE PLATES, 

PLATE THICKNESS RATIO (A/H=60), FIBER VOLUME FRACTION(VF=0.6), INITIAL TEMPERATURE (T0=250C) ,  SIMPLE SUPPORT (S2)  UNDER 

ENVIRONMENTAL CONDITIONS. 

 

Environmental 

Conditions. 

 

 

Mean 

(ωl) 

(TD) 

COV, ωl2 

bi 

(i=1- 9) (i=7.-8) (i=9) (i=10) 

ΔT=00C, ΔC=0% 10.9496 0.0565 0.0010 0.0036 3.50e-04 

ΔT=1000C, ΔC=1% 9.7744 0.3829 0.0231 0.0819 0.0012 

ΔT=2000C, ΔC=3% 33.8795 0.0559 0.0152 0.0409 2.63e-04 

ΔT=3000C, ΔC=5% 40.2525 0.0150 0.0133 0.0057 0.0013 

Conclusions 

In the present study, the stochastic bending response of laminated composite plates in the presence of small 

random variation in the material properties TID and TD, geometric properties, coefficients of thermal expansion 

and coefficients of hygroscopic expansions using higher order shear deformation theory (HSDT) is investigated. 

The numerical results presented herein show that the plate deflections are reduced with increase in moisture and 

temperature. They also confirm that the characteristics of bending are significantly influenced by temperature rise, 

the degree of moisture concentration, fiber orientation, and fiber volume fraction. The dimensionless mean and 

coefficient of variation (COV) of fundamental frequency of the plate increases with increase in moisture and 

temperature. 

It is also observed that hygrothermal dependent mechanical properties greatly affect the flexural behavior of the 

laminated composite plates. The dispersion in frequency of the plate is the higher with random change in E11 , G12, 

V12 and h in both of the TID and TD material. Tight controls of these properties are therefore required for high 

reliability of the plate design. The flexural response of the laminated composite plate deteriorates considerably 

with the increase in temperature and moisture concentration and this hygrothermal environment becomes more 

detrimental as the working temperature reaches higher temperature.  

The clamped support plate is more desirable from a dispersion point of view as compared to other support 

conditions of the plate subjected to all random system input variables. However, dimensionless mean fundamental 

frequency of the plate shows opposite effect. The effect of the randomness in the thermal expansion and 

hygroscopic coefficients and plate lamina thickness on the COV of the fundamental frequency subjected to 

hygrothermal loading is quite significant. It is therefore desirable to account for the uncertainty in these parameters 

for a reliable and safe design. The effects of various boundary conditions are also discussed, showing the 

applicability of the present solution methodology. 
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NOTATIONS 

 

 

 

 

 

 

Aij, Bij, etc         : Laminate stiffnesses 

a, b                       : Plate length and breadth 

h : Thickness of the plate 

Ef, Em  : Elastic moduli of fiber and matrix, respectively. 

Gf, Gm : Shear moduli of fiber and matrix, respectively. 

vf, vm  : Poisson’s ratio of fiber and matrix, respectively. 

Vm, Vf : Volume fraction of fiber and matrix, respectively. 

αf, αm  : Coefficient of thermal expansion of fiber and matrix, respectively. 

bi   : Basic random material properties 

E11, E22   : Longitudinal and Transverse elastic moduli 

G12, G13, G23    : Shear moduli 

Kl,  : Linear bending stiffness matrix 

Kg : Thermal geometric stiffness matrix 

D  Elastic stiffness matrices 

,M m   : Mass and inertia matrices 

ne, n : Number of elements, number of layers in the laminated plate 

Nx, Ny, Nxy  In-plane thermal buckling loads 

nn : Number of nodes per element 

 Ni : Shape function of ith node 

p

ijklC  : Reduced elastic material constants 

f, {f}(e) : Vector of unknown displacements, displacement vector of eth element 

u, v, w : Displacements of a point on the mid plane of plate 

1u , 2u , 3u  : Displacement of a point (x, y, z) 

,ij i j   : Stress vector, Strain vector 

ψy, ψx : Rotations of normal to mid plane about the x and y axis respectively 

θx, θy, θk : Two slopes and angle of fiber orientation wrt x-axis for kth layer 

x, y, z : Cartesian coordinates 

ρ, λ, Var(.) : Mass density, eigenvalue, variance 

ω ,  : Fundamental frequency and its dimensionless form  

RVs   : Random variables 

T, C, : Difference in temperatures and moistures 

α1, α2,  β1,  β2 : Thermal expansion and hygroscopic coefficients along x and y direction, 

respectively. 
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Abstract 

Effects of elastic foundations on thermomechanically induced postbuckling response of square cutouts FGM Plates are 

investigated. The basic formulation is based on higher order shear deformation theory [HSDT] using modified C0 continuity. A 

nonlinear finite element method [DIFEM] with first order regular perturbation technique [FORPT] for composite plates is 

extended for FGM plates to solve the random eigenvalue problem. Typical numerical results are presented to examine the effect 

of volume fractions index, plate length to thickness ratios, plate aspect ratios, types of loadings, amplitude ratios, support 

conditions and various sized holes with random thermomechanical properties. The results obtained by the present solution 

approach are validated with those available in the literatures and independent Monte Carlo Simulation (MCS). 

Keywords 

Functionally Graded Materials Plate; Postbuckling Response; Random Material Properties; Regular Perturbation Technique; Elastic 

Foundations 

Introduction 

FGMs consisting of metal and ceramic possess some outstanding mechanical properties such as high fracture 

toughness and high degree of temperature resistance by maintaining the desired structural integrity. Plates with 

circular, square and other openings are extensively used as structural members to further reduce the weight of 

structures, cutouts for hardware to pass through, or in the case of fuselage windows and doors. Although, the 

sizing of structural members with various shaped cutouts is often determined by stability (buckling) constraints. 

Buckling behaviour of geometrically nonlinear FGMs plates resting on elastic foundations, subjected to in-plane 

loadings with temperature dependent and independent properties is of utmost importance in the design and 

development of high performance structural components for stability point of view. In order to predict the 

structural response in terms of stability accurately and enable a better understanding of characterization of actual 

behaviour under thermomechanical loading with various shaped cutouts is an important problem to pay special 

attention for reliability of design. 

Numerous studies on modelling and analysis of thermomechanical of FGMs plate based on deterministic analysis 

have been performed. For examples, Fuchiyama et al. [1], Feldman et al. [2], Noda [3], Reddy [4], Javaheri et al. [5], 

Javaheri et al. *6+, Najafizadeh et al. *7+, Vel et al. *8+, Yang et al. *9+, Ma et al. *10+, Wu *11+, Na et al. *12+, Na et al. 

[13], Wu et al. [14], Saji et al. [15], Zhao et al. [16], Matsunga et al. [17] and Lee et al. [18]. 

Relatively little efforts have been made in the past by the researchers and investigators on the prediction of 

postbuckling response statistics of the structures made of laminated composites and FGMs having random system 

properties. In this direction, Yang et al. [20] evaluated the second-order statistics for elastic buckling of FGM plates 

with randomness in the material properties using stochastic FEM via first-order shear deformation theory in 

conjunction with FOPT. Onkar et al. [21] investigated the generalized buckling of laminated composite circular cut-

out plate with random material properties using classical plate theory (CLT) combined with FOPT. Lal et al. [22] 

investigated the effect of random system properties on the postbuckling of laminated composite plates supported 
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with elastic foundation using HSDT based C0 nonlinear FEM combined with direct iterative procedure in 

conjunction with FOPT. Jagtap et al. [23] presented the stochastic nonlinear free vibration response of FGMs plates 

resting on two parameter Pasternak foundation having Winkler cubic non-linearity with random system properties 

subjected to uniform and non-uniform temperature changes with temperature independent (TID) and dependent 

(TD) material properties based on higher order shear deformation theory (HSDT) with von-Karman nonlinear 

strains using modified C0 continuity. 

Alireza Hassanzadeh Taheri et al. [32] investigated the free vibration characteristics of functionally graded 

structures by an isogeometrical analysis approach. Yin S et al. [33] carried out a cut-out isogeometric analysis for 

thin laminated   composite plates using level sets. Shuohui Yin et al. [34] investigated the in-plane material 

inhomogeneity of functionally graded plates using a higher-order shear deformation plate isogeometric theory. 

Tiantang Yu et al. [35] studied on the thermal buckling analysis of functionally graded plates with internal defects 

using extended isogeometric analysis.  

It is evident from the available literatures mentioned above that the studies of stochastic postbuckling response of 

FGM plates resting on elastic foundations, subjected to thermomechanical loadings involving randomness in 

thermomechanical material properties of constituent materials with square cut-outs using computationally efficient 

direct iterative based C0 nonlinear FEM in combined with mean centred FORPT is not dealt by the researchers to 

the best of author’s knowledge. 

The results are presented with new concept in the form of tables, which can suit as a bench mark for the future 

research. 

Mathematical Formulations 

Consider a rectangular FGM plate with holes consisting of metal and ceramic at the top and bottom layer of length 

a, width b, and total thickness h, defined in (x, y, z) system with x- and –y axes located in the middle plane and its 

origin placed at the corner of the plate. Let 
 , ,u v w

 be the displacements parallel to the (x, y, z) axes, respectively 

as shown in Fig. 1(a). In the present analysis, for plate with circular and square holes of various sizes one quarter 

plate is used due to symmetry of the FGM plate. The load – displacement relation between the plate and the 

supporting foundations is given as  

 P=K1w −K22w              (1)  

  

FIGURE.1 (a) GEOMETRY OF RECTANGULAR FGM PLATE WITH CIRCULAR CUTOUS(b)QUARTER OF FGM PLATES WITH SQUARE 

CUTOUT. 

b h 
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where P is the foundation reaction per unit area, 2  =   2/  x2 +  2/  y2 and  K1 and K2 are linear Winkler 

(normal) foundation, linear Pasternak (shear layer) foundation parameters, respectively and w is the transverse 

displacement of the plate. This model is simply known as Winkler type when K2 = 0. The square cut-outs geometry 

for one quarter of the FGM plate is given in Fig. 1(a). The hole size for square holes are expressed, a0/a, where a0 

are length of square holes, respectively. 

The properties of the FGM plate are assumed to be vary according to Power law through the thickness of the plate 

only, such that the top surface z = h/2 is ceramic-rich and the bottom surface z = -h/2 is metal reach. The effective 

mechanical and thermal properties of the FGMs plate of an arbitrary point within the plate domain are expressed 

as: 

         
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                (1a)  

where, t and b represent the ceramic and metal constituents, respectively.  With E, α and k are the effective 

Young’s modulus, thermal expansion coefficient and thermal conductivity, respectively. The ceramic metal volume 

fraction VC is the function of coordinate in the thickness direction, z and is expressed as        

  0.5 , / 2 / 2, 0

n

C

z
V z h z h n

h

 
       
                                                           (2) 

where, n is the volume fraction index and is always positive. For n is taken as zero, the plate is fully ceramic and n 

is taken as one, the composition of ceramic and metal is linear. The Poisson’s ratio v depends weakly on 

temperature change and is assumed to be constant [25].  

Displacement Field Model  

In the present study, the assumed displacement field is based on the Reddy’s higher order shear deformation plate 

theory [28] which requires C1 continuous element approximation. The slightly modified to make the suitability of 

C0 continuous element [29]. A C0 continuity permits easy isoparametric finite element formulation and 

consequently can be applied for non-rectangular geometries as well.  In modified form, the derivatives of out-of-

plane displacement two involved in the in-plane are themselves considered as separate degree of freedom (DOFs). 

Thus five DOFs with C1 continuity are transformed into seven DOFs with C0 continuity due to conformity with 

the HSDT.  In this process the artificial constraints are imposed which can be enforced variationally through a 

penalty approach. However, the literature [29] demonstrates that without enforcing these constraints the accurate 

results using C0 can be obtained in order to satisfy the constraints. The modified displacement field along the x, y, 

and z directions for an arbitrary FGMs plate is now written as 

1 2

1 2

;

;

( ) ( )

( ) ( )

;

x

y

x

y

u

v

w

u f z f z

v f z f z

w

 

 

  

  



                                                                 (3) 

where u , v  and  w  denote the displacements of a point along the (x, y, z) coordinates axes: u, v, and w are 

corresponding displacements of a point on the mid plane. Here ,x xw and ,y yw 
 
are the slopes along x and y 

axes, respectively and 
x , 

y are the rotations of normal to the mid plane about the y-axis and x-axis, respectively. 

The function  1f z and  2f z  given in Eq. (1) can be written as 

  3

1 1 2f z C z C z  ;   3

2 4f z C z 
 
with  2

1 2 41, 4 3C C C h   . 

The displacement vector for the modified C0 continuous model can be written as       

 
T

y x y xq u v w        ,                                                          (4) 
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where, comma (,) denotes partial differential.    

Strain Displacement Relations  

For the FGM plate considered here, the relevant strain vector consisting of linear strain (in term of mid plane 

deformation, rotation of normal and higher order terms), non-linear strain (von-Karman type) and thermal strains 

vectors associate with the displacement are expressed as   

       L NL T

ij ij ij ij     
 
( , 1,2,...,6i j )                  (5)  

where L

ij , NL

ij and  T

ij are the linear, non-linear and thermal strain vectors, respectively. 

From Eq. (5), the linear strain tensor using HSDT can be written as : 

mn

L L
Hij kl             (6)   

where,  Hmn is the function of z and unit step vector as  defined in Appendix (A.1) and 
L

kl  is reference plain linear 

strain tensor defined as    

  0 0 0 0 0 0 2 2 2 0 0 2 2

1 2 6 1 2 6 1 2 6 4 5 4 5
T

L

kl k k k k k k k k                                          (7)  

Assuming that the strains are much smaller than the rotations (in the von-Karman sense), one can rewrite 

nonlinear strain vector  NL

ij  given in Eq. (5) as [23] 

  
1

2

NL

ij nij ijA                               (8)  

where,   

, 0

0 ,
1

, ,
2

0 0

0 0

x

y

nij y x

w

w

A w w

 
 
 
 
 
 
 
 

 and          

,

,

x

ij

y

w

w


  
  
  

    

The thermal strain vector  T

ij  
given in Eq. (5) is represented as [23] 

                                                                                                                                    

  

    (9)  

Here, α1 and α2 are coefficients of thermal expansion along the x and y directions, respectively and ΔT denotes the 

uniform and non uniform change in temperature.       

The temperature field for non uniform temperature change is expressed as [25] 

0( )T T z T                    (10)  

where, T0 is initial temperature and can be expressed as  

( ) ( ) ( )b t bT z T T T z                      (10a)  

where, T(z) is the temperature distribution along z direction, t and b are referred as top and bottom surface 

parameter η(z) can be written as  

   

1

2

 ;       , 1, 2,...60

0

0

T

ij T i j







 
 
  

   
 
 
  
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 
                

               (11)   

where  
2 3 4 5

2 3 4 5
1

( 1) (2 1) (3 1) (4 1) (5 1)

tb tb tb tb tb

b b b b b

k k k k k
C

n k n k n k n k n k
     

    
                                                         

Here k, z and n indicate thermal conductivity, distance from central axis and volume fraction, respectively, with ktb 

= kt -kb. 

For uniform temperature change Eq. (10) can be written as   

 
0( ) ( )t bT z T T T                                 (12)   

For uniform and non-uniform temperature rise, the initial (T0) and bottom (Tb) temperatures of the plate is 

assumed to be 300K and Tc as 600K, respectively throughout whole analysis, unless otherwise mentioned.  

Constitutive Relations 

The constitutive law of thermo-elasticity for material under consideration relates the stresses with strains in a plane 

stress state for an isotropic layer of a of a laminate is expressed as  

   , 1,2,...6ij ijkl ijC i j  
    

             (13)  

where, 
ijklC  is elastic material constant matrix as defined in Appendix of (A.2).  

Strain Energy  

The strain energy of FGM plate consisting of linear and nonlinear strain energy undergoing large deformation can 

be expressed as,             

1 L NL                        (14)    

where 
L and 

NL are the linear and nonlinear strain energy of laminated plate, respectively. 

From Eq. (14), the strain energy (a
) of the FGM plate can be expressed as  

1 1

2 2

L L

L ijkl ij kl ij mn klC d D d   
 

     
 

            (15)  

where, Dmn  
is the laminate elastic stiffness matrix as defined in Appendix (A.3). 

From Eq. (14) the nonlinear strain energy (
NL ) of the plate can be rewritten as  

3 4

5

1 1

2 2

1

2

L NL NL L

ij ij kl ijNL

NL NL

kl ij

D d D d

D d  (i,j,k,l = 1, 2, 3)

   

 

 



   

 

 

                                               (16)

  

where , L

ij and
 

NL denotes un-deformed configuration of plate and linear and nonlinear strain tensors, 

respectively.  

Using Eq. (8) the Eq. (16) can be expressed as 
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 

3 4

5
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1
, , , , 1,2,3             

2
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ij ijNL nij nij nkl nkl
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A D A d i j k l
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      

  

 

 

 


                      (17)  

where D3, D4 and D5 are the laminate stiffness matrices of the plate defined in Appendix (A.4). 

The potential energy (
2 ) storage by thermal load (non-uniform change in temperature across the thickness) due 

to change in temperature, pre buckling stresses, i.e., in plane thermal compressive stress resultants in the plate are 

generated. These stress resultants are the reason for the buckling. The potential energy due to the in plane thermal 

stress resultants is expressed as 

      
22

2

1
, , 2 , ,

2

, ,1

, ,2

xtm x ytm y xytm x y
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N w N w N w w dA

w N N w
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w N N w
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  

        
     

        




                         (18)

  

where, Nxtm, Nytm and Nxytm are written as the Nxm-Nxt, Nym-Nyt and Nxym-Nxyt respectively. Here Nxm, Nym, Nxym and Nxt, 

Nyt, Nxyt are the in-plane compressive mechanical and thermal stresses per unit length along x, y and x-y directions, 

respectively. For mechanical loading, in the above expression Nxt, Nyt , Nxyt are assumed as zero. 

Strain energy due to elastic foundations can be expressed as: 

    222

3 1 2 , ,
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, 2 ,
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2
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T

x x
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y y
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w K w dA
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  

    
    

      
        





          (18a) 

 

Solution Procedure Using Finite Element Models 

Strain Energy of the Plate Element   

the present study, a C0 nine-noded isoparametric finite element with 7 DOFs per node is employed. For this type of 

element, the displacement vector and the element geometry are expressed as 

   
1 1

;;
NN NN

i i ii
i i

xq q x 
 

      and       
1

NN

i i

i

y y


                          (19)  

where 
i  is the interpolation function for the ith node, 

i
q is the vector of unknown displacements for  the ith node, 

NN is the  number of  nodes  per element and  xi and yi are Cartesian coordinate of the ith node. 

The linear mid plane strain vector as given in Eq. (7) can be expressed in terms of mid plane displacement field and 

then  the energy is computed for each element and then summed over all the elements to get the total strain energy 

[22]. 

Following this and using finite element model as given in Eq. (19), Eq. (14) after summed over all the elements can 

be written as 

 
1 1

1

NE
e

e

                           (20)  

Where, NE is the number of elements and  
1

e
 is the elemental potential energy of the plate.  

Using Eq. (15) and Eq. (17), Eq. (20) can be further expressed as, 



76                                                                                                    Rajesh Kumar 

   

 
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 
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 

 
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
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i ij j i i

e

q K q q F

           
(21)

 

   
     

1

2
      

T T T

i ij j i iq K q q F                                                      

where [ ]     ij ijij L NLK K K with 
1 2 3

1 1

2 2
         
       ij ij ij ijNL NL NL NLK K K K

 

where  and 
ij ijL NLK K   

    are defined as global linear and nonlinear stiffness matrix of the plate and are defined in 

Appendix (A.5) 

Thermomechanical Buckling Analysis  

Using finite element model of Eq. (19) the Eq. (18) can be written as 

 
2 2

1

NE
e

e

    
 

 

 

 
 

1

1

2 

 
 

NE e eT e

i jG ij
e

q K q dA

          
(22) 

                                           
     

1

2
 
 

T

i jG ij
q K q                                                                                                                

where,   and 
 

 
  ij

G
K  are defined as the thermal buckling load parameters and the global geometric stiffness 

matrix (arises due to thermal loadings), respectively. 

Governing Equations 

The governing equation for postbuckling analysis of FGMs plates resting on elastic foundations, subjected to 

thermomechanical loadings can be derived using Variational principle, which is generalization of the principle of 

virtual displacement. For the displacement field of the buckling, the minimization of (1+2+3) with respect to 

generalized displacement vector and after simplification, using this, Eq. (21) and Eq. (22) can be represented as [27] 

        
T

ij i iK q F                   (23)  

For the critical buckling state corresponding to the neutral equilibrium condition, the second variation of total 

potential energy () must be zero. Following this conditions, once obtains as standard eigenvalue problem 

    0        ij
ij i iG

K K q                  (24)  

Using this Eq. (23) can be rewritten as  

            ij
ij i i iG

K q K q
                 (25)  

The plate stiffness matrix
ijK 

 
 consisting of linear and nonlinear stiffness matrices and geometric stiffness matrix 

are random in nature, being dependent on the system properties of the structure. Consequently, the eigenvalue 

and eigenvectors obtained by Eq. (25) are random in nature. In deterministic environment, the solution of Eq. (25) 

can be obtained using standard solution procedure such as direct iterative method, Newton-raphson method or 

subspace iteration method etc. However, in random environment it is not possible to obtain the solution using 

above mentioned numerical methods. Further analysis is required to obtain the complete solution of Eq. (25) with 

random material properties. For this purpose, novel probabilistic/stochastic DISFEM procedure successfully 

applied by authors [23] for FGM plates, is extended for this problem in the present work.   

Solution Approach  

A DISFEM for Postbuckling Problems    
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The novel probabilistic DISFEM approach is the combination of deterministic based on direct iterative based 

nonlinear FEM technique successfully combined with mean centred FORPT with reasonable accuracy to obtain the 

solution of random nonlinear governing equation of postbuckling response. Steps for the direct iterative technique 

are given in [31]. 

The detailed DISFEM solution procedure for postbuckling analysis is shown in flowchart of Fig. 4. 
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FIGURE.4   FLOW CHART OF SOLUTION PROCEDURE OF STOCHASTIC POSTBUCKLING PROBLEM 
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A DISFEM for Postbuckling Problem    

The novel probabilistic DISFEM approach is the combination of deterministic based on direct iterative based 

nonlinear FEM technique successfully combined with mean centered FOPT with reasonable accuracy to obtain the 

solution of random nonlinear governing equation of postbuckling response.  

Steps for the Direct Iterative Technique 

The nonlinear eigenvalue problem as given in Eq. (25) is solved by employing a DISFEM assuming that the 

random changes in eigenvector during iterations does not affect the nonlinear stiffness matrices with the following 

steps.  

(i)By setting amplitude to zero, the random linear eigenvalue problem      [ ]
ij i iij

L L i LG
K q K q  

    
 is obtained 

from Eq. (25) neglecting the nonlinear stiffness matrices. Then the random linear eigenvalue problem is broken up 

into zeroth and first order equations using perturbation technique. The zeroth order linear eigenvalue problem is 

solved by normal eigen solution procedure to obtain the linear critical load parameters  and the linear 

eigenvector .
i

L
q  

The first order perturbation equation is used to obtain the standard deviation of the thermal post buckling load 

which is presented in next sub-section of perturbation technique. The computation of buckling load and 

eigenvector under initial thermal stress condition for the zeroth order deterministic eigenvalue problem requires as 

following.  

A linear mechanical and thermal problem by assuming nonlinear stiffness matrix as zero is solved first for the 

reference mechanical and thermal load  iq  for a given constraints of the plate. The linear solution is used for 

computing the initial thermal stress tensor ij . The thermal stress tensor ij at each integration point is used to 

compute the geometric stiffness matrix. After the geometric stiffness matrix is computed, the system stiffness 

matrix is modified by geometric stiffness matrix to solve the deterministic eigenvalue problem using proposed by 

Eq. (25). This is generalizes eigenvalue problem where ijK    and  
ij

G
K 
 

 are symmetric matrices and are generally 

found to be positive definite. In some cases  
ij

G
K 
 

 can be positive semi-definite which can overcome by shifting 

invert transformation. In such cases the right most eigenvalue gives the minimum value of the mean post buckling 

load parameter. The critical or minimum mean post buckling load of the structure is obtained by multiplying the 

load parameter i  with reference load (consists of mechanical and thermal). 

(ii)For a specified maximum deflection C at a centre of the plate, the linear normalized eigenvector is scaled up by 

C times, so that resultant vector will have a displacement C at the maximum deflection point.  

Using the scale-up eigenvector, the nonlinear terms in the stiffness matrix 
ijNLK 

 
 can be obtained. The problem 

may now be treated as a linear eigenvalue problem with new updated stiffness matrices. The random eigenvalue 

problem can again be broken up into zeroth and first order equation using perturbation technique. The 

deterministic zeroth order can be used to obtain critical post buckling load 
iNL and eigenvector 

iNLq and the 

random first order equations can be used to obtain the standard deviation (SD) of the eigen solutions using the first 

order perturbation technique as presented in the next section. 

(iii)Steps (ii)-(iii) are repeated by replacing 
iLq by 

iNLq in the step (ii) to obtain the converged mean and standard 

deviation of the nonlinear critical buckling load
iNL to a prescribed accuracy (≈10-3) 

(iv)Steps (i) to (iv) are repeated for various value of C. 

The detailed DISFEM solution procedure for postbuckling analysis is shown in flowchart of Fig. 2. 
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FIGURE.2 VALIDATION STUDY OF DIMENSIONLESS MEAN POSTBUCKING LOAD OF CLAMPED SQUARE FGMS PLATE SUBJECTD TO 

THERMOMECHANICAL LOADING BIAXIAL COMPRESSION 

Consider a class of problems where the random variation is very small as compared to the mean part of random 

system properties. Further it is quite logical to assume that the dispersions in the derived quantities like   ijK , 

,
iNL etc. are also small with respect to their mean values. In the present analysis, the lamina material properties, 

thermal expansion coefficients and the foundation stiffness parameters are treated as independent random 

variables (RVs). However, the formulation can be easily extended for even dependent random variables.  

In general, without any loss of generality any arbitrary random variable can be represented as the sum of its mean 

and zero mean random part, denoted by superscripts ‘d’ and ‘r’, respectively  

     
     , ,,                          

      
G Gij ij ij

d r d r d r

i j ij ij i iG

d r
i i i iK K K K K K q q q                                   (26)  

where,   
d

ijK and 
 

 
  ij

d

G
K  are the mean elastic (linear and nonlinear) and geometric stiffness matrices of the 

structures, respectively. Correspondingly   
r

ijK and 
 

 
  G

ij

rK  are the first order derivatives of elastic and geometric 

(arises due to plate thickness) matrices, respectively with respect to the rth basic random variables (BRV) with ‚R‛ is 

the total number of random input variables chosen for the analysis. 

By substituting Eq. (26) in Eq. (25), and expanding the random parts in Taylor’s series keeping up to the first order 

terms and neglecting the second and higher order terms, since first order approximation is sufficient to yield 

results with the desired accuracy having low variability as in the sensitive applications. After comparing the zeroth 

and first order terms once obtained as 

Zeroth order perturbation equation: 

     0       1,2,3,..., : no sum over dK K
G

ij

d d d
ij i i i n kq

 
 
 
 

 
      
 

                      (27)  

First order perturbation equation: 

                   1,2,3,..., : no sum over 
ij ij ij

d r d r d d

ij ij i G G G

d rr d d r d
i i i i i i i i n kK K K K Kq q q q q                          

           (28)   

Here Eq. (27) is the deterministic equation relating to the mean eigen values and corresponding mean eigenvectors, 

which can be determined by conventional eigen solution procedures Eq. (28) is the random equation, defining the 
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stochastic nature of the mechanical and thermal buckling which cannot be solved using conventional method. For 

this a further analysis is required.  

Variance of Postbuckling Load 

The first order equation is used to obtain the first order partial derivatives of eigenvalue with respect to the basic 

random variables which are then used to the post buckling load covariance. 

To obtained the statistics of critical postbuckling load, multiply both sides of Eq. (28) by mean eigenvector 

 d

iq computed from Eq. (27) for minimum mean eigenvalue  .d

cr This gives 

                                           ij ij ij

d d d d d d d d r d r d

i ij cr i j i ij cr jG G G

rr
criq K K q K q q K K qq                               (29)  

Since both   
d

ijK  and  
 
  ij

d

G
K are symmetric therefore the left hand side of Eq. (29) equals zero by definition of the 

zeroth order equation. By employing  
 
  ij

d

G
K  orthonormal conditions (using orthogonal properties), the first term 

on the right hand side equation reduces to r
cr .  

The expression for the first order derivative of the eigenvalue is then written as 

       , 1,2,...,
ij

d r r d

i ij jG

r
cr q K K q i j n          

.                    (30)  

Using equation (21), the variances of the eigenvalue can now be expressed as [22] 

   , ,
1 1

,
 

  
d d

i j i k

p p
r r

cr j k
j k

Var Cov b b                   (31)  

Where  ,r r
j k

Cov b b  is the cross variance between 
r

jb and r
kb . The standard deviation (SD) is obtained by the 

square root of the variance. As revealed by the expression, the post buckling load dispersion of the plate exhibits 

linear variation with all random input variables. The systematic overview of present study is shown in Fig. 3. 

 

 
 

 

 

 

 
 

 

 

FIGURE.3 VALIDATION STUDY FOR THE COV OF THE INITIAL BUCKING LOAD DUE TO RANDOMNESS IN MATERIAL 

PROPERTIES(bi, (i=1,..., 4) FOR CCCC BI-AXIALLY COMPRESSED SQUARE AI/ZrO2 PLATE WITH VOLUME FRACTION INDES (n = 0.2 

and 0.8)AND a/h = 10 

Result and Discussions 

A computer programme has been developed in MATLAB [R2010a] environment to compute the second order 
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to thermomechanical loading with square cutouts using the proposed DISFEM probabilistic method. The validity 

and efficacy of the proposed algorithm is examined by comparing the results with those available in literatures and 

independent MCS. A nine noded Lagrangian isoparametric element with 7 degree of freedom per node for the 

present HSDT model has been used for discretizing the plate. For the computation of results non-uniform 

temperature with TID and TD material properties have been taken. 

 For the computation of results, full integration schemes (3x3) are used for thick plate and selective integration 

scheme (2x2) for thin plate. In the present analysis, foundation stiffness parameters, various support conditions, 

volume fraction index and hole sizes are used to check the efficacy of the present model. However, the formulation 

and code do not put any limitations. 

The outlined proposed DISFEM technique for composite structure is extended for FGM structures with reasonable 

accuracy. Throughout the analysis, it is assumed that materials are perfectly elastic during the deformation.  

In the present study, the following sets of boundary conditions are used. These can be written as 

All edges simply supported (SSSS)  

0, 0, ; 0 0,y y x xu v w at x a u v w at y b              
; 

All edges clamped (CCCC): 

0, 0, 0, ;x y x yu v w at x a and y b           
 

Two opposite edges clamped and other two simply supported (CSCS): 

0, 0 0;x y x yu v w at x and y           
 

0, 0,y y x xv w at x a u w at y b            
; 

The temperature dependent [TD] material properties of functionally graded materials (Ti-6Al-4V/ZrO2) are used 

throughout the analysis, unless otherwise mentioned. The COV is defined as coefficient of variation. The 

dimensional mean is represented as dimensional postbuckling thermomechanical critical load. Being the linear 

nature of variations of COV as mentioned earlier and passing through origin, the results are only presented by 

coefficient of correlation (COC) of system properties equal to 0.1. However, the presented results for standard 

deviation revealed that the DISFEM approach would be valid up to COV of 0.2 [24, 30], moreover the presented 

results would be sufficient to extrapolate the results of other COV keeping in mind the limitation of the FORPT. 

The assumed basic random input variables (bi) are sequenced and written as  

  

where 1 2, , , , , , , , ,  and c m c m c m c mE E k k k k n   
 
are Young’s moduli, Poisson’s ratios, coefficient of thermal 

expansion, Winkler and Pasternak elastic foundations, thermal conductivity of ceramic and metal, respectively and 

volume fraction index.  

The results presented in tables using DISFEM are divided into two parts. In the given table, in first part one set of 

mean thermomechanical postbuckling load and temperature characteristic of compressive loaded plates with 

square holes are discussed. In the second part, the effect of randomness in the material properties on the 

postbuckling load and temperature with and without foundation parameters are presented. These two sets of 

problems are solved separately to determine the dimensionless mean and COV response of our interest. It is noted 

that for the present analysis uniaxial and/or biaxial in-plane thermomechanical loading acting separately with 

square and circular holes have been taken throughout the study. In the present analysis, mean centred first order 

perturbation technique has been used to compute the numerical results, keeping in mind the complicity and 

difficulty of using higher order perturbation at cost of very little improvement of results especially for nonlinear 

1 2 3 4 5 6 7 8 1 9 2 10 11, , , , , , , and andc m c m c m c mb E b E b b b n b b b k b k b k b k             
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problem. It is also noted that results are presented for lower amplitude ratios (Wmax/h = 0.2 to 0.8) due to 

convergence and computational time for various shaped holes. For the computation of results following 

dimensionless postbuckling parameters are used and expressed as:         

2

2

0

cr

cr

N a

D



 , where 

3

0 212(1 )

c

c

E h
D





 ,  and ( ) 3

Tcr crλ α T 10    

where
cr and

Tcr are dimensionless mean postbuckling load and temperature parameters, respectively. In the 

above expression, 
crN  and ( )crT  are the dimensional critical postbuckling load and temperature, respectively. In 

the above expression ( )crT  is expressed as 
T T  where 

T  is the critical thermal buckling load parameter and T  

is considered as Tc - Tm. For the mean dimensional postbuckling analysis of FGM plate, the dimensionless 

parameters
cr

 

and

  
T c r

 

are used. While for the calculation of coefficient of variance (COV), the dimensional 

mean
crN  and ( )crT   are used. It is noted that the values given in parenthesis in the tables are the dimensionless 

mean values of thermomechanical postbuckling load and temperature. Throughout the analysis both type of 

loadings, uniaxial and biaxial compression without considering shear effect has been used. For the numerical 

illustration, the following parameters are taken as plate thickness ratio (a/h = 10, 15, 40, 50, 60, and 100), plate aspect 

ratio (a/b = 1 and 1.5), amplitude ratio (Wmax/h = 0.2, 0.4, 0.6 and 0.8) and volume fraction index (n = 0.5, 1, 5 and 

10).The temperature dependent material properties of functionally graded material are taken in computation as 

shown in Table 1. 

TABLE. 1  THE FOLLOWING TI-6AL-4V/ZRO2 AND SUS304/ SI3N4 TYPES OF FGMS PROPERTIES FOR TID AND TD MATERIAL PROPERTIES ARE USED 

FOR COMPUTATION: 

Types of 

material 
Properties P0 P-1 P1 P2 P3 P(T = 300K) 

ZrO2 
E(Pa) 244.27e+9 0 -1.371e-3 1.214e-6 -3.681e-10 168.06e9 

α (1/K) 12.766e-6 0 -1.491e-3 1.006e-5 -6.778e-11 18.591e-6 

Ti-6Al-4V 
E(Pa) 122.56e+9 0 -4.586e-4 0 0 105.698e9 

α (1/K) 7.5788e-6 0 6.638e-4 -3.147e-6 0 6.941e-6 

 

SUS304 

E(Pa) 201.04e+9 0 30.79e-4 -6.534e-7 0 207.7877e9 

α (1/K) 12.330e-6 0 8.086e-4 0 0 18.591e-6 

ρ (Kg/m3) 8166 0 0 0 0 8166 

v 0.3262 0 0 0 0 0.31776 

 

Si3N4 

E(Pa) 348.43e+9 0 -3.070e-4 2.016e-7 -8.946e-7 322.27e9 

α (1/K) 5.8723e-6 0 9.095e-4 0 0 7.4745e-6 

ρ (Kg/m3) 2370 0 0 0 0 2370 

v 0.2400 0 0 0 0 0.2400 

Validation Study for Mean Postbuckling Response 

To make assure the accuracy and proficiency of the present outlined probabilistic formulation, three test examples 

have been analyzed for postbuckling analysis of FGM plates resting on elastic foundations. For validation purpose, 

all the plates considered here are subjected to uniaxial compression with uniform or nonuniform temperature 

distribution. The properties of constituents (metal and ceramic) are assumed at room temperature (300K).  

We first consider the accuracy of present deterministic FEM by comparing the results with those available in the 

literatures. The results of initial buckling load and temperature with cut-out are validated through numerical 

examples. 

Validation study of buckling load parameter (Ńcr = Ncra2/π2D0) of the SSSS and CCCC supported square Al/ZrO2 

plate with square cut-out under uniaxial compression with  a/h = 100, with those available in Zhao et al. [16] and 

Lal et al. [31] as shown in Table 2. From these tables, it can be seen that the present outlined approach using C0 

nonlinear FEM based on HSDT with von-Karman nonlinearity are in very good agreement with the results of Zhao 
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et al. [16] and Lal et al. [31], based on first order shear deformation theory in conjunction with the element free kp-

Ritz method and third order shear deformation theory respectively. 

TABLE 2 VALIDATION STUDY OF BUCKLING LOAD PARAMETER ŃCR = NCRA2/Π2D0 OF THE CLAMPED SQUARE AL/ZRO2 PLATE WITH SQUARE HOLES 

UNDER UNIAXIAL COMPRESSION WITH A/H = 100, MODE = 1, HOLE SIZE = A0/A FOR SQUARE HOLE. 

Types 

of 

hole 

Hole size 
 Ńcr = Ncra2/π2D0  

 n = 0 n = 0.5 n = 1 n = 2 n = 5 

Square 

0.1 

Present 7.8584 6.2750 5.6788 5.2064 4.7252 

Lal et al.[31] 7.8437 6.2507 5.6570 5.1948 4.7285 

Zhao et 

al.[16] 
8.0186 6.2410 5.5031 4.9665 4.7236 

0.2 

Present 6.7232 5.3577 4.8489 4.4527 4.0530 

Lal et al.[31] 6.6566 5.2873 4.7848 4.4049 4.0284 

Zhao et 

al.[16] 
6.6873 5.2212 4.6465 4.2415 3.9557 

0.4 

Present 3.9939 3.1724 2.8709 2.6429 2.4171 

Lal et al.[31] 3.8853 3.0813 2.7862 2.5649 2.3490 

Zhao et 

al.[16] 
4.7551 3.7341 3.3344 3.0533 2.8329 

Validation Study for Stochastic Postbuckling Response 

The probabilistic results obtained by outlined probabilistic DISFEM approach is also validated with the standard 

result using independent MCS. In this study, the influence of dispersion in the material properties is examined by 

allowing the coefficient of correlation (COC) changing from 0 to 20%. It is noted that for the analysis of COV, 

dimensional mean value of postbuckling load and temperature are taken into consideration throughout the 

analysis. The COV of postbuckling load and temperature of square simply supported FGM plates resting on elastic 

foundations subjected to thermomechanical loading with square holes (hole size = 0.2) having TD material 

properties obtained from present DISFEM approach, when only one material property bi, (i = Ec) changing at a 

time keeping others as deterministic to their mean values are examined in Table 3 and compared with independent 

MCS. For the MCS approach the sample values are generated using MATLAB software to fit the desired mean and 

SD using Gaussian probabilistic distribution function (GPDF). The convergence of MCS results are studied by 

taking the different numbers of samples of material properties Ec which are given as input to the present 

deterministic Eq. (27) and statistic of the sample of postbuckling load and temperature are calculated. From 

convergence study, it is experience that 12,000 samples are sufficient to give the desired statistics of postbuckling 

load and temperature. It is observed that the present results using DISFEM are closed to independent MCS results. 

This indicates the accuracy of present formulation for the range of COV considered.  

TABLE 3 VALIDATION STUDY OF BUCKLING LOAD PARAMETER ŃCR = NCRA2/Π2D0 OF THE SIMPLY SUPPORTED SQUARE AL/ZRO2 PLATE WITH 

SQUARE HOLES UNDER UNIAXIAL COMPRESSION WITH A/H = 100, MODE = 1, HOLE SIZE = A0/A  FOR SQUARE HOLE. 

Types 

of hole 

Hole 

size 

 Ńcr = Ncra2/π2D0 

 n = 0 n = 0.5 n = 1 n = 2 n = 5 

Square 

0.1 

Present 16.8098 13.2298 11.8196 10.7733 9.8987 

Lal et al.[31] 16.6303 13.1110 11.7121 10.6586 9.7705 

Zhao et 

al.[16] 
17.3798 13.1274 10.8931 4.1186 1.6860 

0.2 

Present 15.7290 12.3428 11.0292 10.0792 9.3037 

Lal et al.[31] 16.2686 12.7849 11.4230 10.4252 9.6034 

Zhao et 

al.[16] 
15.2566 11.8608 10.4858 9.5211 8.9606 
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Parametric Study for Second Order Statistics (Dimensionless Mean and COV) of Postbuckling Response 

Table 4. Effect of thermomechanical loading, volume fraction index with random material properties {bi(i = 1,..., 7) 

= 0.1} on the dimensionless mean and COV of postbuckling load and temperature of SSSS supported FGM square 

plate without and with Winkler (k1=100, k2=0) and Pasternak (k1=100, k2=10) elastic foundations, square hole (hole 

size = 0.1) having TID and TD material properties, a/h = 50, and Wmax/h = 0.4. The dimensionless mean 

thermomechanical postbuckling load and temperature are given in bracket. Uniaxial and Biaxial Compression. It is 

observed that plate with TID and TD material properties and Pasternak elastic foundations increase the mean and 

COV compared to Winkler elastic foundations and plates without foundation. TD conditions have significant 

effects when volume fraction index is increased. 

TABLE 4 EFFECT OF THERMOMECHANICAL LOADING, VOLUME FRACTION INDEX WITH RANDOM MATERIAL PROPERTIES {BI(I = 1,..., 7) = 0.1} ON THE 

DIMENSIONLESS MEAN AND COV OF POSTBUCKLING LOAD AND TEMPERATURE OF SSSS SUPPORTED FGM SQUARE PLATE WITHOUT AND WITH 

WINKLER (K1=100, K2=0) AND PASTERNAK (K1=100, K2=10) ELASTIC FOUNDATIONS, SQUARE HOLE (HOLE SIZE = 0.1) HAVING TID AND TD MATERIAL 

PROPERTIES, A/H = 50, AND WMAX/H = 0.4. THE DIMENSIONLESS MEAN THERMOMECHANICAL POSTBUCKLING LOAD AND TEMPERATURE ARE GIVEN IN 

BRACKET. UNIAXIAL AND BIAXIAL COMPRESSION. 

Loading Hole types Uniaxial Biaxial 

  
TID TD TID TD 

n =1 n = 5 n =1 n = 5 n =1 n = 5 n =1 n = 5 

Thermo 

Mechanical 

 

Square 

hole 

(k1=000, 

k2=0) 

Nonlinear 

(6.5069)  

0.0610 

(5.2904) 

0.0592 

(4.7285) 

0.0614 

(4.0725) 

0.0616 

(3.3793) 

0.0610 

(2.7467) 

0.0587 

0.0612 

(2.4561) 

0.0610 

(2.1149) 

Linear 4.9087 4.1089 3.6698 3.2388 2.5478 2.1313 1.9044 1.6800 

Square 

hole 

(k1=100, 

k2=0) 

Nonlinear 

(7.8139) 

0.0658 

(6.5960) 

0.0618 

(5.636) 

0.0657 

(4.9800) 

0.0626 

(4.0976) 

0.0664 

(3.4653) 

0.0617 

(2.9504) 

0.0659 

(2.6093) 

0.0620 

Linear 6.2250 5.4219 4.5794 4.1474 3.2662 2.8501 2.3988 2.1746 

Square 

hole 

(k1=100, 

k2=10) 

Nonlinear 

(10.2880) 

0.0720 

(9.0244) 

0.0670 

(7.3707) 

0.0718 

(6.6970) 

0.0670 

(5.5361) 

0.0741 

0.0694  

(4.9030) 

 

( 3.9402) 

0.0731 

 

0.0679  

(3.5987) 

Linear 8.7640 7.9085 6.3473 5.8961 4.7039 4.2870 3.3884 3.1638 

Effect of thermo mechanical loading, fibre volume fraction index and various hole sizes with random material 

properties {bi (i = 1,..., 7) = 0.1} on the dimensionless mean and COV of post buckling load and temperature of SSSS 

supported FGM square plate without and with Winkler (k1=100, k2=0) and Pasternak (k1=100, k2=10) elastic 

foundations, square holes having TD material properties, a/h = 10, and Wmax/h = 0.4 shown in Table 5 . The 

dimensionless mean thermomechanical post buckling load and temperature are given in bracket. The 

dimensionless mean thermomechanical post buckling load and temperature are given in bracket. It is noticed that 

there is significant effects of biaxial compression on the pates without foundations and resting on elastic 

foundations when there is increase in volume fraction index. The mean and COV values for uniaxial and Pasternak 

elastic foundations are more compared to biaxially compressed plates. 

Table 6 shows the effect of thermo-mechanical loading and amplitude ratios with random material properties {bi(i 

= 1,..., 7) = 0.1} on the dimensionless mean and COV of postbuckling load and temperature of SSSS supported FGM 

square plate without and with Winkler (k1=100, k2=0) and Pasternak (k1=100, k2=10) elastic foundations, square 

holes having TD material properties, a/h = 60, hole size = 0.2 and n = 5. The dimensionless mean thermomechanical 

postbuckling load and temperature are given in bracket. It is noticed that when amplitude ratios is increased the 
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mean values and COV decrease for uniaxially and biaxially compressed plates without elastic foundations. The 

plates resting on Pasternak elastic foundations have significant effects on mean and COV when there is increase in 

amplitude ratios, however these value decrease for biaxially compressed plates. 

TABLE 5 EFFECT OF THERMOMECHANICAL LOADING, FIBER VOLUME FRACTION INDEX AND VARIOUS HOLE SIZES WITH RANDOM MATERIAL 

PROPERTIES {BI (I = 1,..., 7) = 0.1} ON THE DIMENSIONLESS MEAN AND COV OF POST BUCKLING LOAD AND TEMPERATURE OF SSSS SUPPORTED FGM 

SQUARE PLATE WITHOUT AND WITH WINKLER (K1=100, K2=0) AND PASTERNAK (K1=100, K2=10) ELASTIC FOUNDATIONS, SQUARE HOLES HAVING TD 

MATERIAL PROPERTIES, A/H = 10, AND WMAX/H = 0.4. THE DIMENSIONLESS MEAN THERMOMECHANICAL POST BUCKLING LOAD AND TEMPERATURE 

ARE GIVEN IN BRACKET. 

Loading 
Hole 

Types 
Uniaxial Biaxial 

  

n = 0.5 n = 10 n = 0.5 n = 10 

Hole 

size=0.1 

Hole 

size=0.2 

Hole 

size=0.1 

Hole 

size=0.2 

Hole 

size=0.1 

Hole 

size=0.2 

Hole 

size=0.1 

Hole 

size=0.2 

Thermo 

Mechanical 

 

 

 

 

 

Square 

hole 

(k1=000, 

k2=0) 

Nonlinear 

(4.1306) 

0.0666 

(3.5789) 

0.0670 

(3.1167) 

0.0649 

(2.6957) 

0.0661 

(2.1406) 

0.0659 

(2.0679) 

0.0659 

(1.6158) 

0.0639 

(1.5589) 

0.0639 

Linear 3.1356 2.6729 2.4383 2.0758 1.6198 1.5523 1.2602 1.2072 

Square 

hole 

(k1=100, 

k2=0) 

Nonlinear 

(4.9779) 

0.0746 

(4.3169) 

0.0737 

(3.9400) 

0.0658 

(3.4047) 

0.0666 

(2.6400) 

0.0716 

(2.5718) 

0.0715 

(2.1147) 

0.0619 

(2.0620) 

0.0618 

Linear 4.0494 3.4194 3.3317 2.7906 2.1208 2.0504 1.7607 1.7043 

Square 

hole 

(k1=100, 

k2=10) 

Nonlinear 

(6.5754) 

0.1727 

(5.6083) 

0.0786 

(5.6032) 

0.0698 

(4.6085) 

0.0689 

(3.6313) 

0.0788 

(3.5446) 

0.0785 

(3.1039) 

0.0679 

(3.0311) 

0.0675 

Linear 5.6909 4.6713 4.8195 3.9280 3.1128 3.0109 2.7502 2.6593 

 

TABLE 6 EFFECT OF THERMOMECHANICAL LOADING AND AMPLITUDE RATIOS WITH RANDOM MATERIAL PROPERTIES {BI(I = 1,..., 7) = 0.1} ON THE 

DIMENSIONLESS MEAN AND COV OF POSTBUCKLING LOAD AND TEMPERATURE OF SSSS SUPPORTED FGM SQUARE PLATE WITHOUT AND WITH 

WINKLER (K1=100, K2=0) AND PASTERNAK (K1=100, K2=10) ELASTIC FOUNDATIONS, SQUARE HOLES HAVING TD MATERIAL PROPERTIES, A/H = 60, 

HOLE SIZE = 0.2 AND N = 5. THE DIMENSIONLESS MEAN THERMOMECHANICAL POSTBUCKLING LOAD AND TEMPERATURE ARE GIVEN IN BRACKET. 

Loading 
Hole 

types 

Uniaxial Biaxial 

Wmax/h 

= 0.2 

Wmax/h = 

0.4 

Wmax/h = 

0.6 

Wmax/h = 

0.8 

Wmax/h 

= 0.2 

Wmax/h 

= 0.4 

Wmax/h 

= 0.6 

Wmax/h 

= 0.8 

Thermo 

Mechanical 

Square hole 

(k1=000, 

k2=0) 

Nonlinear 

(3.4219) 

0.0690 

(3.9810) 

0.0621 

(4.7779) 

0.0558 

(4.8907) 

0.0652 

(1.8093) 

0.0687 

(2.1068) 

0.0612 

(2.5570) 

0.0535 

( 3.1591) 

0.0469 

Linear 3.1471 3.1471 3.1471 3.1471 1.6652 1.6652 1.6652 1.6652 

Square hole 

(k1=100, 

k2=0) 

Nonlinear 

(4.2814) 

0.0708 

(4.8151) 

0.0654 

(5.5737) 

0.0610 

(5.8109) 

0.0690 

(2.3011) 

0.0711 

(2.6004) 

0.0647 

(3.0530) 

0.0577 

(3.6563) 

0.0512 

Linear 4.0183 4.0183 4.0183 4.0183 2.1560 2.1560 2.1560 2.1560 

Square hole 

(k1=100, 

k2=10) 

Nonlinear 

(5.8566) 

0.1566 

( 6.3874) 

0.1406 

(7.2430) 

0.1478 

(8.1437) 

0.0652 

( 3.2620) 

0.1838 

(3.5641) 

0.1920 

(4.0204) 

0.1939 

(4.6281) 

0.1911 

Linear 5.6054 5.6054 5.6054 5.6054 3.1155 3.1155 3.1155 3.1155 
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Effect of thermomechanical loading, volume fraction index, plate thickness ratios and various hole size with 

random material properties {bi(i = 1,..., 7) = 0.1} on the dimensionless mean and COV of post buckling load and 

temperature of SSSS supported biaxially compressed FGM square plate without and with Winkler (k1=100, k2=0) 

and Pasternak (k1=100, k2=10) elastic foundations square holes having TD material properties, Wmax/h =  0.4 

presented in Table 7. The dimensionless mean thermomechanical postbuckling load and temperature are given in 

bracket. It is seen that on varying plate thickness ratios and volume fraction  index with increase in hole size the 

mean valued decrease while COV increases for plates without foundations. When plates are resting on Winkler 

and Pasternak elastic foundations, the mean values increases and decreases on increasing volume fraction index. 

COV is significant thin plates compared to thick plates. 

Table 8 shows the effect of thermomechanical loading, volume fraction index, plate aspect ratios and various hole 

size with random material properties {bi(i = 1,..., 7) = 0.1} on the dimensionless mean and COV of postbuckling load 

and temperature of SSSS supported uniaxially compressed FGM plate without and with Winkler (k1=100, k2=0) 

and Pasternak (k1=100, k2=10) elastic foundations ,square holes having TD material properties, a/h = 50, Wmax/h = 

0.4. The dimensionless mean thermomechanical postbuckling load and temperature are given in bracket. It is 

noticed that for aspect ratio 2 with volume fraction index 10 and hole size 0.3there is significant decrease in mean 

values without foundation conditions. However when plates are resting on elastic foundations the mean values 

increases drastically for lower volume fraction index. The COV significantly increases for Pasternak elastic 

foundations. Here hole size aspect ratio volume fraction index and elastic foundation matter much.  

TANBLE 7 EFFECT OF THERMOMECHANICAL LOADING, VOLUME FRACTION INDEX, PLATE THICKNESS RATIOS AND VARIOUS HOLE SIZE WITH 

RANDOM MATERIAL PROPERTIES {BI(I = 1,..., 7) = 0.1} ON THE DIMENSIONLESS MEAN AND COV OF POSTBUCKLING LOAD AND TEMPERATURE OF SSSS 

SUPPORTED BIAXIALLY COMPRESSED FGM SQUARE PLATE WITHOUT AND WITH WINKLER (K1=100, K2=0) AND PASTERNAK (K1=100, K2=10) ELASTIC 

FOUNDATIONS SQUARE HOLES HAVING TD MATERIAL PROPERTIES, WMAX/H =  0.4. THE DIMENSIONLESS MEAN THERMOMECHANICAL POSTBUCKLING 

LOAD AND TEMPERATURE ARE GIVEN IN BRACKET. 

Loading Hole types a/h =40 a/h =100 

 

 

 

 

 

n = 0.5 n = 10 n = 0.5 n = 10 

Hole 

size=0.2 

Hole 

size=0.3 

Hole 

size=0.2 

Hole 

size=0.3 

Hole 

size=0.2 

Hole 

size=0.3 

Hole 

size=0.2 

Hole 

size=0.3 

 

 

Thermo 

Mechanical 

 

 

 

Square hole 

(k1=000, 

k2=0) 

Nonlinear 

(2.6777) 

0.0670 

(2.7209) 

0.0670 

(2.0308) 

0.0658 

(2.0625) 

0.0663 

(3.0601) 

0.0679 

(3.0002) 

0.0679 

(2.3189) 

0.0677 

(2.2785) 

0.0679 

Linear 2.0790 2.1005 1.6238 1.6409 2.4319 2.3694 1.8931 1.8505 

Square hole 

(k1=100, 

k2=0) 

Nonlinear 

(3.2175) 

0.0735 

(3.2658) 

0.0735 

(2.5703) 

0.0663 

(2.6069) 

0.0666 

(3.5914) 

0.0733 

(3.5409) 

0.0734 

(2.8502) 

0.0667 

(2.8187) 

0.0671 

Linear 2.6158 2.6421 2.1604 2.1821 2.9585 2.9028 2.4204 2.3841 

Square hole 

(k1=100, 

k2=10) 

Nonlinear 

(4.2689) 

0.3252 

(4.2854) 

0.2967 

(3.6197) 

0.1621 

(3.6230) 

0.1444 

(4.6352) 

0.3075 

(4.5641) 

0.2912 

(3.8931) 

0.1511 

(3.8374) 

0.1374 

Linear 3.6624 3.6561 3.2052 3.1919 3.9972 3.9104 3.4585 3.3892 

Effect of thermomechanical loading, volume fraction index, support conditions and various hole size with random 

material properties {bi(i = 1,..., 7) = 0.1} on the dimensionless mean and COV of postbuckling load and temperature 

of uniaxially compressed FGM square plate without and with Winkler (k1=100, k2=0) and Pasternak (k1=100, k2=10) 

elastic foundations, square holes having TD material properties, a/h = 15, Wmax/h = 0.4 is shown in Table 9. The 

dimensionless mean thermomechanical postbuckling load and temperature are given in bracket. It is observed that 

Pasternak elastic foundation with clamp support with volume fraction index 0.5 and hole size 0.3 have significant 

effects on the plates compared to simple support. Mean and COV both increase for plates resting on elastic 

foundations. 
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TABLE 8 EFFECT OF THERMOMECHANICAL LOADING, VOLUME FRACTION INDEX, PLATE ASPECT RATIOS AND VARIOUS HOLE SIZE WITH RANDOM 

MATERIAL PROPERTIES {BI(I = 1,..., 7) = 0.1} ON THE DIMENSIONLESS MEAN AND COV OF POSTBUCKLING LOAD AND TEMPERATURE OF SSSS 

SUPPORTED UNIAXIALLY COMPRESSED FGM PLATE WITHOUT AND WITH WINKLER (K1=100, K2=0) AND PASTERNAK (K1=100, K2=10) ELASTIC 

FOUNDATIONS ,SQUARE HOLES HAVING TD MATERIAL PROPERTIES, A/H = 50, WMAX/H = 0.4. THE DIMENSIONLESS MEAN THERMOMECHANICAL 

POSTBUCKLING LOAD AND TEMPERATURE ARE GIVEN IN BRACKET. 

Loading Hole types a/b =1 a/b =2.0 

 

 

 

 

 

n = 0.5 n = 10 n = 0.5 n = 10 

Hole 

size=0.2 

Hole 

size=0.3 

Hole 

size=0.2 

Hole 

size=0.3 

Hole 

size=0.2 

Hole 

size=0.3 

Hole 

size=0.2 

Hole 

size=0.3 

 

 

Thermo 

Mechanical 

 

 

 

Square hole 

(k1=000, 

k2=0) 

Nonlinear 

(4.6826) 

0.0675 

(4.5740) 

0.0684 

(3.5565) 

0.0671 

(3.4729) 

0.0693 

(4.8495) 

0.0764 

(1.1946) 

0.0793 

(3.3311) 

0.0943 

(0.9059) 

0.0954 

Linear 3.6516 3.5459 2.8526 2.7725 4.1891 0.5224 2.8352 0.3479 

Square hole 

(k1=100, 

k2=0) 

Nonlinear 

(5.5051) 

0.0736 

(5.2967) 

0.0745 

(4.3774) 

0.0676 

(4.1952) 

0.0703 

(1.1229) 

0.2859 

(1.2586) 

0.0788 

(3.3557) 

0.0931 

(1.1046) 

0.0695 

Linear 4.5142 4.3275 3.7090 3.5412 4.2272 0.5808 2.8828 0.4122 

Square hole 

(k1=100, 

k2=10) 

Nonlinear 

(7.0754) 

0.3095 

(6.5918) 

0.2020 

(5.9100) 

0.1283 

(5.4214) 

0.0775 

(2.1345) 

2.9312 

(1.9358) 

0.2017 

(3.9444) 

0.1231 

(1.6055) 

0.1239 

Linear 6.1123 5.6594 5.2500 4.8020 0.0695 1.0891 3.2920 0.9409 

 

TABLE 9 EFFECT OF THERMOMECHANICAL LOADING, VOLUME FRACTION INDEX, SUPPORT CONDITIONS AND VARIOUS HOLE SIZE WITH RANDOM 

MATERIAL PROPERTIES {BI(I = 1,..., 7) = 0.1} ON THE DIMENSIONLESS MEAN AND COV OF POSTBUCKLING LOAD AND TEMPERATURE OF UNIAXIALLY 

COMPRESSED FGM SQUARE PLATE WITHOUT AND WITH WINKLER (K1=100, K2=0) AND PASTERNAK (K1=100, K2=10) ELASTIC FOUNDATIONS, SQUARE 

HOLES HAVING TD MATERIAL PROPERTIES, A/H = 15, WMAX/H = 0.4. THE DIMENSIONLESS MEAN THERMOMECHANICAL  POSTBUCKLING LOAD AND 

TEMPERATURE ARE GIVEN IN BRACKET.  

Loading 
Hole 

types 
SSSS CCCC 

 

 

 

 

 

n = 0.5 n = 10 n = 0.5 n = 10 

Hole 

size=0.2 

Hole 

size=0.3 

Hole 

size=0.2 

Hole 

size=0.3 

Hole 

size=0.2 

Hole 

size=0.3 

Hole 

size=0.2 

Hole 

size=0.3 

 

 

Thermo 

Mechanical 

 

 

 

Square 

hole 

(k1=000, 

k2=0) 

Nonlinear 

(3.8201) 

0.0668 

(3.6290) 

0.0681 

(2.8855) 

0.0658 

(2.7360) 

0.0682 

(5.8418) 

0.0974 

(7.4320) 

0.0954 

(4.4943) 

0.1135 

(5.6934) 

0.0912 

Linear 2.8872 2.7393 2.2481 2.1269 5.5351 7.3038 4.2621 5.6013 

Square 

hole 

(k1=100, 

k2=0) 

Nonlinear 

(4.5783) 

0.0742 

(4.2725) 

0.0753 

(3.6356) 

0.0679 

(3.3567) 

0.0704 

(6.2918) 

0.1315 

(7.5269) 

0.0983 

(4.6210) 

0.0881 

(5.7849) 

0.0911 

Linear 3.6742 3.4336 3.0171 2.7952 5.8486 7.3927 4.5534 5.6892 

Square 

hole 

(k1=100, 

k2=10) 

Nonlinear 

(5.9608) 

0.2952 

( 5.3478) 

0.1608 

(4.9264) 

0.1275 

(5.4049) 

0.0800 

(7.1997) 

0.1412 

 

(8.5721) 

0.0850 

 

(5.8531) 

0.1097 

(6.9278) 

0.1343 

Linear 5.0488 4.5924 4.2926 4.7920 7.1054 8.5494 5.7912 6.8291 
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Conclusions 

The DISFEM procedure outlined in the present study is applied to compute the second order statistics (mean and 

COV) of postbuckling load and temperature of uniaxially or biaxially compressed FGM plates resting on Winkler 

and Pasternak elastic foundations with square holes of various sizes subjected to thermomechanical loading. The 

following conclusions are drawn based on observation from present study. 

The mean dimensionless thermomechanical postbuckling load and temperature and corresponding COV of FGM 

plate subjected to uniaxial and biaxial compression decreases with increase in cutout size. The dimensionless mean 

postbuckling load and temperature and corresponding COV is higher for solid plate as compared to cutout plates. 

Plate is most sensitive with random change in Ec and Em of FGM plate with Pasternak elastic foundation square 

cutout.  

In general, as amplitude ratio increases the dimensionless mean postbuckling load increases while COV decreases. 

But increase in volume fraction index results in decrease in dimensionless mean postbuckling load. The 

dimensionless mean and COV of postbuckling load and temperature of FGM  plate changes with the volume 

fraction index, thickness ratio, plate aspect ratio, types of loading, support conditions and types of material where 

stability at the cost of load is utmost important.  

Thin plate with square cut-out is more sensitive than thick plate with respect to dimensionless mean and COV of 

postbuckling load and temperature subjected to uniaxial and biaxial compression. Therefore, for stability and 

reliability point of view rectangular plate with square cut-out having low volume  fraction and Pasternak elastic 

foundation should be considered. For stability and reliability point of view, clamped supported plates with various 

shaped and cut-out would be desirable.  
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where, 
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Nomenclature 

 

Aij, Bij, etc 

 

: 

 

Laminate stiffnesses 

a, b                       : Plate length and breadth 

h : Thickness of the plate 

Ef, Em  : Elastic moduli of fiber and matrix, respectively. 

Gf, Gm : Shear moduli of fiber and matrix, respectively. 

vf, vm  : Poisson’s ratio of fiber and matrix, respectively. 

Vm, Vf : Volume fraction of fiber and matrix, respectively. 

αf, αm  : Coefficient of thermal expansion of fiber and matrix, respectively. 

bi : Basic random material properties 

E11, E22  : Longitudinal and Transverse elastic moduli 

G12, G13, G23 : Shear moduli 

Kl, : Linear bending stiffness matrix 

Kg : Thermal geometric stiffness matrix 

D  Elastic stiffness matrices 

,M m   : Mass and inertia matrices 

ne, n : Number of elements, number of layers in the laminated plate 

Nx, Ny, Nxy  In-plane thermal buckling loads 

nn : Number of nodes per element 

 Ni : Shape function of ith node 

p

ijklC  : Reduced elastic material constants 

f, {f}(e) : Vector of unknown displacements, displacement vector of eth element 

u, v, w : Displacements of a point on the mid plane of plate 

1u , 2u , 3u  : Displacement of a point (x, y, z) 

,ij i j   : Stress vector, Strain vector 

ψy, ψx : Rotations of normal to mid plane about the x and y axis respectively 

θx, θy, θk : Two slopes and angle of fiber orientation wrt x-axis for kth layer 

x, y, z : Cartesian coordinates 

ρ, λ, Var(.) : Mass density, eigenvalue, variance 

ω ,  : Fundamental frequency and its dimensionless form  

RVs   : Random variables 

T, C, : Difference in temperatures and moistures 

α1, α2,  β1,  β2 : Thermal expansion and hygroscopic coefficients along x and y direction, 
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