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Preface

Aging. The following six chapters review ge-
netic and genomic contributions to disorders of 
selected body systems: Respiratory, Cardiology, 
Hematology, Neurology, Endocrine and Cancer. 
The next two chapters discuss issues unique to 
nursing, Genomics in Nursing Research, Prac-
tice, Administration & Education and Genom-
ics and Symptomatology. The final chapter, 
Genomic Technologies, offers a glimpse of ge-
nomic advances that are being translated into 
clinical application. Because genomic science 
is evolving so quickly, new information was 
emerging daily as this book was being prepared. 
Each chapter therefore should be considered an 
orientation and introduction to a topic, in con-
trast to a comprehensive resource.

We would like to thank the talented inter-pro-
fessional team of nurses, physicians, research-
ers, scientists, geneticists and genetic counselors 
who worked with us to turn an idea into reality. 
Inter-professional education and collaboration, 
endorsed by the Institute of Medicine and the 
American Association of Colleges of Nursing 
are essential to improve outcomes in today’s 
healthcare environment. This book’s collaborat-
ing authors represent a highly experienced group 
of health care professionals from a number of 
different specialties, including: advanced prac-
tice registered nurses (many who have received 
post-doctoral training at the National Institutes 
of Health or National institute of Nursing Re-
search), board-certified advanced genetics nurs-
es, certified genetic counselors, physicians, nurse 
ethicists, molecular geneticists, nurse genetic 
scientists, nurse academicians, nursing leaders 
and administrators. Working in hospitals, spe-
cialty clinics, universities, laboratories and phar-
macies throughout the world, these specialists 
devoted many hours to researching and writing 
chapters, sending references we may never have 
found otherwise, and furnishing valuable insight 
and support across the entire life of this writing 

The purpose of this book is to improve the 
genomic competency of nurses prepared at the 
graduate level. The more informed graduate level 
nurses are about the rapidly evolving field of ge-
nomics, the more likely they are to apply it at the 
point of care, and the more prepared they will be 
to engage in conversations about how, when and 
where genomic technologies should be used in 
healthcare systems.

In 2009, a group of fifteen graduate nurses 
with genetics/genomics expertise from around 
the U.S. began a 2-year process to develop ‘The 
Essential Genetic/Genomic Competencies for 
Nurses with Graduate Degrees,” an expanded 
set of genetic/genomic competencies tailored to 
meet the needs of nurses prepared at the gradu-
ate level. The competencies have two major do-
mains, with each divided into seven major cat-
egories. The first domain, Professional Practice, 
includes (1) Risk Assessment & Interpretation; 
(2) Genetic Education, Counseling, Testing and 
Results Interpretation; and (3) Clinical Manage-
ment. The second domain, Professional Respon-
sibilities, comprises: (4) Ethical, Legal and So-
cial Implications (ELSI); (5) Professional Role; 
(6) Leadership; and (7) Research.

The present volume evolved from and is 
based on constructs found in the graduate essen-
tials mentioned above, and many of the chap-
ters are authored by nurses who participated 
in developing the competencies. A number of 
chapters address the competencies in a clinical 
setting, while others, e.g., chapters 4 and 16, are 
focused exclusively on a single category within 
the competencies. The first five chapters pro-
vide the scientific underpinnings for genomic 
practice, which are Basic Genetic/Genomic 
Concepts, Risk Assessment, Genetic Testing 
and Counseling, ELSI and Pharmacogenom-
ics. The next four chapters present genomic is-
sues across the human lifespan: Preconceptual/
Prenatal, Newborn Screening, Pediatrics and 
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project. We wholeheartedly thank each and every 
contributor.

We hope readers find this book useful, infor-
mative and interesting. In creating it our ultimate 
goal has been to produce a resource that will im-
prove healthcare outcomes for individuals, their 
families and communities by moving nursing 

one step closer to the further goals of personal-
ized healthcare and precision medicine.

DIANE C. SEIBERT
QUANNETTA T. EDWARDS
ANN H. MARADIEGUE
SUSAN T. TINLEY
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Chapter 1

Introduction to Basic Genetics and Genomics

SUSAN T. TINLEY, Ph.D, RN, CGC (RET)

of nursing practice, administration, research, and 
education.

1.2.  DNA STRUCTURE AND REPLICATION

1.2.1.  Structure of DNA and Chromosomes 

Deoxyribonucleic acid (DNA) is the molecule 
that provides the genetic instructions for the de-
velopment, growth, and ongoing functioning of 
any human being. There are two different cellular 
locations for DNA, in the nucleus (nuclear DNA 
[nDNA]) and in the mitochondria (mitochondrial 
DNA [mtDNA]). The nucleus is the location for 
the vast majority of human DNA; except in areas 
where both types of DNA are being discussed, it 
can be assumed that DNA is used to refer to DNA 
in the nucleus. 

DNA is composed of two strands of polynucle-
otides. Each nucleotide is made up of a five car-
bon sugar, a phosphate, and a nitrogenous base. 
The appearance of DNA has been compared to a 
ladder which is coiled around core units of eight 
histones to provide support and stability to the 
structure.

The two sides of the ladder are composed of 
the alternating sugar and phosphate, and each 
sugar phosphate unit has a base attached. Hy-
drogen bonding between the bases holds the two 
strands together, forming the rungs of the ladder. 
One of the bases in a pair is larger, a purine, and 
the other is smaller, a pyrimidine. The purines 

1.1.  INTRODUCTION

Basic genetic/genomic concepts need to be un-
derstood to meet competencies outlined in the Es-
sential Genetic and Genomic Competencies for 
Nurses with Graduate Degrees (Greco, Seibert & 
Tinley, 2012). This chapter provides a foundation 
for the remaining chapters in this book by offer-
ing a review of the basic principles of “genetics,” 
and introduces the concept of “genomics.” The 
traditional science of “genetics” is focused on 
exploring and explaining the impact of individu-
al (or single) gene or chromosome changes, most 
of which are individually quite rare, on health. 
The broader term, “genomics,” considers the in-
teractions between and within genes, regulatory 
sequences, and the environment. Genomics re-
search is improving our understanding of genetic 
disorders, common complex health problems 
such as diabetes and heart disease, and disease 
prevention and treatment response. The basic 
science of “genetics” has evolved into “genomic 
healthcare.” For simplicity and continuity, the 
term genomics will be used throughout this book 
except when addressing specific genetic concepts 
or conditions. Because the genomics education of 
our readers may vary substantially, there are ref-
erences at the end of the chapter to resources that 
can provide additional information. The reader is 
encouraged to refer back to these resources in the 
future, to stay current with the rapidly changing 
field of genomics and its impact on specific areas 

Objectives:

•	Describe the difference between “genetics” and “genomics”.
•	Explain the similarities and differences between mitosis and meiosis.
•	Discuss normal and abnormal chromosome structure.
•	Explain how DNA and RNA function in creation of gene products.
•	Describe various alterations in the genetic code and their functional effects.
•	Discuss details of each of the patterns of inheritance.



2 INTRODUCTION TO BASIC GENETICS AND GENOMICS

are adenine and guanine (A and G) and the py-
rimidines are cytosine and thymine (C and T). 
The pyrimidine thymine always pairs with the 
purine adenine (A and T) and the pyrimidine cy-
tosine always pairs with the purine guanine (C 
and G). This consistent pairing is essential when 
the DNA replicates itself during cell division and 
during transcription and translation of the DNA 
code into proteins. A gene is a unit of the DNA 
that provides the code for a protein (Figure 1.1).

The nuclear DNA, which will be the primary 
focus of this chapter, is packaged into 23 pairs 
of chromosomes. Within each pair, 1 chromo-
some is maternally derived and the other is pater-

nally derived. Of the 23 pairs of chromosomes, 
22 are the same for males and females and are 
called autosomes, numbered “1 to 22,” with 1 
being largest and 22 the smallest. The 23rd pair 
of chromosomes determines the sex of the indi-
vidual: XX for females and XY for males. The 
Y chromosome carries approximately 50 genes 
(National Library of Medicine [NLM] [U.S.], 
2014a), whereas the X chromosome, which is 
much larger, carries approximately 2,000 genes 
(NLM [U.S.], 2014b). 

The chromosome consists of two arms joined 
at a constriction point called the centromere. The 
shorter of the two arms is the p arm (for “pe-

FIGURE 1.1.  Chromosome. (Figure from the National Institutes of  Health. National Human Genome Research Institute. 
Digital Media Database. Darryl Leja/NHGRI/NIH. Available at: http://www.genome.gov/dmd/img.cfm?node=Photos/
Graphics&id=85281.)
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tite”) and the longer arm is the q arm. Some of 
the pairs of chromosomes are the same size, but 
the centromeres are located in different positions 
on the chromosome. Chromosomes with centro-
meres located in the center (chromosomes 1, 3, 
16, 19, and 20) are called metacentric; those with 
off-center centromeres (chromosomes 2, 4 to 12, 

17, 18, X, and Y) are called submetacentric; and 
those with centromeres at the tip of the chromo-
some (chromosomes 13, 14, 15, 21, and 22) are 
acrocentric (Figure 1.2).

Another way of differentiating the chromo-
some pairs, in addition to their size and centro-
mere placement, is by the distinctive patterns of 

1.2.  DNA Structure and Replication

FIGURE 1.2.  Acrocentric, Metacentric, and Submetacentric Chromosomes. (Figure adapted from U.S. Department 
of  Energy Genomic Science Program’s Biological and Environmental Research Information System (BERIS). Indi-
vidual chromosome illustrations available at: https://public.ornl.gov/site/gallery/default.cfm?restsection=.)

FIGURE 1.3.  Chromosomes of  the Human Genome. (Figure from National Human Genome Research Institute. 
Digital Media Database. Darryl Leja/NHGRI/NIH. Available at: http://www.genome.gov/dmd/img.cfm?node=Photos/
Graphics&id=85175.)
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light and dark bands (Figure 1.3). The tips of the 
chromosomes (similar to shoelace tips) are called 
telomeres (Figure 1.1), which act as a cap to pre-
vent the chromosome from unraveling. Telo-
meres are made of many repeats of the sequence 
“TTAGGG,” and each time a cell divides, 20 to 
30 of these TTAGGG repeats are lost. When all 
the telomere repeats are completely gone, the 
cell dies. Germ cells produce an enzyme called 
“telomerase,” which restores the telomeres to 
their original length so that at fertilization, there 
are sufficient repeats for the new individual’s 
lifetime (Read & Donnai, 2011).

1.2.2.  The Cell Cycle 

Each somatic cell goes through a cycle from 
its formation to its division into two daughter 
cells. There are four phases in each cell cycle: 
Gap1 (G1), S, Gap2 (G2), and M (Figure 1.4). 
During G1, the longest phase, individual chro-
mosomes cannot be distinguished, because the 
DNA is unwound (extended) to allow easy ac-
cess to the genetic code for protein production. 

During the “S” phase, the DNA is reproduced 
in the process of replication (Figure 1.5) so that 

each daughter cell receives an exact copy of the 
DNA from the original cell. During replication, 
the hydrogen bonds between the bases break so 
that the two strands of the DNA can separate. 
The bases of each strand attract new nucleo-
tides with complementary bases, and hydrogen 
bonds form between the bases to hold the new 
strand to the old strand. Replication does not oc-
cur at the same time in all of the chromosomes 
or even within any given chromosome, but by 
the end of the S phase, all of the chromosomes 
are completely reproduced. Each of the original 
two DNA strands have been a template for a new 
complete molecule of DNA that is an exact copy 
of the original. The two identical copies of the 
chromosome are called sister chromatids, and 
they are held together at the centromere. 

In the G2 phase, any replication errors that oc-
curred during the S phase are detected and re-
paired. If the errors are too numerous or severe, 
programmed cell death (apoptosis) occurs. Mal-
function in the process of apoptosis can lead to 
the development of cancer, which is discussed in 
greater depth in Chapter 15.

1.2.3.  Mitosis 

The M phase of the cell cycle is the phase in 
which the cell divides, forming 2 new cells. In 
somatic cells, this phase is called mitosis (Fig-
ure 1.6). During the first stage of mitosis (pro-
phase), the chromosomes become tightly coiled 
and visible under a microscope. The nuclear 
membrane disappears and spindle fibers develop 
at the centrioles at either side of the cell, and the 
free end of the spindle fibers attach to the cen-
tromeres. During the second stage (metaphase), 
the chromosomes are highly condensed and most 
easily visualized under the microscope. During 
metaphase, the chromosomes are arranged along 
the equatorial plane of the cell, and the spindle 
fibers begin to contract, pulling the sister chro-
matids apart. During the third phase (anaphase), 
all the centromeres divide and the spindle fibers 
pull one sister chromatid to one side of the cell 
and the other to the opposite side. At the end 
of anaphase, there should be 92  chromosomes, 
with 46 on either side of the cell. During the next 
phase (telophase), a nuclear membrane develops 
around each group of 46 chromosomes, which 
are beginning to extend into indistinguishable 

FIGURE 1.4.  Cell Cycle. (Figure from National Hu-
man Genome Research Institute (NHGRI) Digital Me-
dia Database. Darryl Leja/NHGRI/NIH. Available at 
http://www.genome.gov/dmd/img.cfm?node=Photos/
Graphics&id=85276.)
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structures again. The division of the cytoplasm 
(cytokinesis) follows, forming two daughter cells 
which are identical to the original cell. These two 
daughter cells then enter interphase, which cor-
responds to G1, S, and G2 of the cell cycle.

1.2.4.  Meiosis 

A different series of cell division steps occurs 
during meiosis, ultimately reducing the number 
of chromosomes in germ cells (sperm and ova) 
from 23 pairs (46 individual chromosomes) to 
23 single chromosomes (Figure 1.7). To accom-
plish this, two cell divisions are required. As in 
mitosis, during meiosis, DNA replicates during 
prophase I, which occurs prior to the first meiotic 
division. In meiosis, prophase I is divided into 
five periods:

Leptokene: DNA becomes condensed, but the 
two chromatids are so tightly associated, they 
cannot be distinguished. 

Zygotene: Chromosomes pair up (e.g., mater-
nal chromosome 12 pairs up with paternal chro-
mosome 12) and are held tightly together by the 
synaptical complex. 

Pachytene: Chromosomes condense even fur-
ther and some genetic material from one chromo-
some trades places with genetic material of the 
other chromosome, creating four unique chro-
matids. This exchange is called crossing over or 
recombination. 

Diplotene: The synaptical complex disappears 
and the chromosomes in each pair start to sepa-
rate. The two chromatids of each chromosome 
are still held together at the centromere.

Diakenesis: The chromosomes reach maxi-
mum condensation.

After prophase, the division steps proceed 
as in mitosis: the nuclear membrane dissolves, 
and the chromosome pairs align along the cells 
equatorial plane (metaphase I). Each pair then 
splits, and the individual chromosomes assort 

1.2.  DNA Structure and Replication

FIGURE 1.5.  DNA Replication Prior to Cell Division. (Figure from Human Genome Program, U.S. Department of  
Energy, Genomics and Its Impact on Science and Society: A 2008 Primer, 2008. [Original version 1992, revised 2001 
and 2008.] Available at: https://public.ornl.gov/site/gallery/detail.cfm?id=393&topic=&citation=&general=DNA%20
replication&restsection=all.)
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randomly, with some paternally derived chromo-
somes going to one pole and others to the other 
side, and similarly with the maternally derived 
chromosomes (anaphase I). Because of random 
assortment of maternally and paternally derived 
chromosomes, there are 223 or > 8 million possi-
ble chromosomal combinations. This tremendous 
potential for diversity is further increased by the 
crossing over that occurs during the pachytene 
period of prophase 1 (Clancy, 2008). The chro-
mosomes group at either pole during telophase 
I and then the cell divides. The cell enters into 
a short interphase prior to beginning meiosis II. 

During prophase of meiosis II, the nuclear 
membrane disappears and the spindle apparatus 
forms. In metaphase II, the chromosomes line up 
in the center of the cell, and in anaphase II, the 

centromeres of the chromosomes separate as the 
spindle fibers pull the sister chromatids apart to-
ward opposite poles. In telophase II, the nuclear 
membrane reforms and cytokinesis occurs so that 
there are now four cells, each having 23 chromo-
somes with a single chromatid. At the time of fer-
tilization, the nuclei of the sperm and ovum join 
into one nucleus with 23 pairs of chromosomes, a 
unique combination of genetic information from 
mother and father. 

1.3.  NUMERICAL AND STRUCTURAL 
CYTOGENETIC ABNORMALITIES 

Cytogenetics is the field that focuses on the 
examination of chromosomes for correct num-
ber and structure. A basic understanding of chro-

FIGURE 1.6.  Mitosis. (Figure from National Institutes of  Health, National Human Genome Research Institute. Digi-
tal Media Database. Darryl Leja/NHGRI/NIH. Available at: http://www.genome.gov/dmd/img.cfm?node=Photos/
Graphics&id=85204.)
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mosomal abnormalities is particularly important 
when caring for prenatal and pediatric popula-
tions and in oncology settings, because chromo-
somal abnormalities occur during reproduction 
and may arise in malignant cells, particularly 
those found in leukemia, lymphoma, and some 
solid tumors.

1.3.1.  Nondisjunction 

Meiosis usually produces germ cells with 23 

chromosomes ready for fertilization with another 
germ cell with its own 23 chromosomes. Occa-
sionally, however, a nondisjunction error occurs 
and chromosomes or chromatids fail to separate. 
Nondisjunction errors can occur either during 
the first or second meiotic division. If the non-
disjunction occurs in the first meiotic division, 
one daughter cell receives an extra chromosome 
and the other is missing one, and when these cells 
go through the second meiotic division, the er-
ror is passed on to their respective daughter cells. 

1.3.  Numerical and Structural Cytogenetic Abnormalities 

FIGURE 1.7.  Meiosis. (Figure from National Institutes of  Health. National Human Genome Research Institute. Digi-
tal Media Database. Darryl Leja/NHGRI/NIH. Available from; http://www.genome.gov/dmd/img.cfm?node=Photos/
Graphics&id=85196.)
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If nondisjunction occurs during the second divi-
sion, the chromatids of one chromosome fail to 
separate, and two copies go to one cell and none 
to the other. 

If a germ cell with 24 chromosomes is fertil-
ized, it will contain three copies of one chro-
mosome (trisomy). Conceptuses with Trisomy 
13, 18, and 21 may survive to birth, whereas 
trisomies of other autosomes are lethal. Chro-
mosome 13 has approximately 300 to 400 genes 
that code for proteins (NLM, 2014c). chromo-
some 18 has approximately 200  to 300 genes 
(NLM, 2014d), and chromosome 21 has approxi-
mately 200  to 300 genes (NLM, 2014e), fewer 
than any of the other autosomes. If a germ cell 
with 22 chromosomes is fertilized (monosomy), 
the embryo rarely survives because too little 
genetic information is usually lethal. The one 
monosomy that is compatible with survival is 
Monosomy X (Turner syndrome [TS]), although 
it is estimated that up to 99% of Monosomy X 
conceptuses miscarry in the first or second tri-

mester. It is theorized that those that survive to 
term have a mosaicism (Wolff, Van Dyke, & 
Powell, 2010).

1.3.2.  Genetic Mosaicism

Genetic mosaicism is the result of a chromo-
somal nondisjunction or DNA mutation that de-
velops during a very early mitotic division after 
fertilization. The individual develops with both 
normal and abnormal cell lines. Individuals af-
fected with a chromosomal mosaicism usually 
are more mildly affected (milder phenotype) than 
someone with a meiotic nondisjunction, because 
at least some of their cells have a normal chro-
mosomal complement. Females with TS (45 X) 
often have a mosaic form of the disorder.

1.3.3.  Translocations 

Some chromosomal abnormalities are due 
to translocations of which there are two major 

FIGURE 1.8.  Reciprocal translocation. (Figure from National Institutes of  Health. Nation-
al Human Genome Research Institute. Digital Media Database. Daryl Leja/ NHGRI/NIH. 
Available at http://www.genome.gov/dmd/img.cfm?node=Photos/Graphics&id=85253.)
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types, Robertsonian and reciprocal. Robertso-
nian translocations develop when the centromere 
of one acrocentric chromosome fuses with the 
centromere of another acrocentric chromosome. 
The two most common types are Robertsonian 
and reciprocal translocations. 

Robertsonian translocations should be consid-
ered when a couple has more than one child with 
Down syndrome (DS). Although DS is most fre-
quently due to a nondisjunctional error, about 5% 

of DS is the result of an unbalanced Robertsonian 
translocation. In an unbalanced Robertsonian 
translocation of chromosomes 14 and 21, the off-
spring inherits the translocated chromosome as 
well as two normal 21s and one normal 14. The 
embryo has a normal number of chromosomes 
(46), but because of the fused 21 and 14, it inher-
its three copies of chromosome 21 and manifests 
the typical DS phenotype. 

Standard nomenclature for translocation DS in 

FIGURE 1.9.  Chromosomal Inversion. (Figure from United States National Library of  Medicine. Genetics Home 
Reference. Available at http://ghr.nlm.nih.gov/handbook/illustrations/inversion.)
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will be described. Genomic advances in symp-
tom management will help ensure that the right 
person receives the right therapy (personalized 
or precision health care), will reduce adverse ef-
fects, and will improve both quality of life and 
overall health outcomes.

18.2.  GENOMICS AND CANCER-
RELATED FATIGUE

Fatigue is a symptom manifested in patients 
that is associated with a wide range of diseases 
and syndromes that often affect individual’s 
physical, social, and mental functioning (Land-
mark-Hoyvik et al., 2010). It is also one of the 
most commonly reported symptoms in individu-
als diagnosed with cancer, often resulting in 
increased stress and anxiety and other health-
related quality of life issues including, but not 
limited to, impaired physical performance, inac-
tivity, helplessness, sleep disturbances, lack of 
appetite, and/or depression (Escalante, Kallen, 
Valdres, Morrow, & Manzullo, 2010; Horneber, 
Fischer, Dimeo, Ruffer, & Weis, 2012; Saligan 
& Kim, 2012). Cancer-related fatigue (CRF) is 
defined as a “distressing, persistent, subjective 
sense of tiredness or exhaustion related to can-
cer or cancer treatment that is not proportional to 
recent activity and interferes with usual function-
ing” (National Comprehensive Cancer Network 
(NCCN), 2015m p. MS-3). The symptoms of 

18.1.  INTRODUCTION

An individual’s genome impacts the trajectory 
of their health and illness throughout life. Thus 
far, the focus of this book has been on the im-
pact of genomics as it relates to an individual’s 
response to drugs, their risk for developing dis-
eases based on their family history, or as a re-
sult of shared genetic and environmental factors. 
Beyond health, illness, and the effectiveness of 
drugs, genomics also influences how an indi-
vidual experiences a particular disorder—or the 
symptomatology of that condition. Research ex-
amining the genetics of common symptoms of-
fers the promise of reducing adverse symptoms 
and improving quality of life, which is particu-
larly important, because symptom management 
is a key function for nursing. 

In this chapter, brief overviews of two com-
mon symptoms are discussed These symptoms 
are cancer-related fatigue and pain, as each of 
these symptoms have been shown to be influ-
enced by genomic discoveries. The role of ge-
nomic variants (i.e., single nucleotide polympor-
phisms [SNPs]) influencing the onset, duration, 
or severity of symptoms, as well as how they 
influence therapeutic responses in preventing, 
alleviating, or eliminating patient’s symptoms, 
will be discussed. Where applicable, other influ-
ences that may potentiate the effects of genomic 
variants in symptom manifestation and treatment 

Objectives:

•	Discuss the impact of genomics on cancer related fatigue.
•	Discuss the genes associated with pain.
•	Explain the role of nursing regarding genomics and symptomatology. 
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CRF can occur during and after treatment of the 
cancer and are often attributed to treatment regi-
mens, such as cytotoxic chemotherapy, radiation 
therapy, or other biological treatments. However, 
CRF can vary, occurring any time in the course 
of disease, and may be self-limiting or persisting 
for many years even after treatment (Bower et 
al., 2006; Horneber et al., 2012). For example, in 
one longitudinal study of breast cancer survivors, 
approximately 34% of the participants reported 
fatigue 5 to 10 years after diagnosis (Bower et 
al., 2006). Similar effects regarding fatigue per-
sistence after diagnosis and treatment have been 
reported (Husson et al., 2013; Hwang et al., 
2014).

Fatigue among patients with cancer can be as-
sociated with multifactorial etiologies and mani-
fest in a myriad of clinical features (Horneber et 
al., 2012; NCCN, 2015). Contributing factors to 
fatigue include pain, emotional distress, sleep 
disturbances, and co-morbidities such as ane-
mia; poor nutrition; physical inactivity; medica-
tion side effects; alcohol and/or substance abuse; 
therapeutic management with cytotoxic, biolog-
ic, or radiation therapy; or other medical condi-
tions (National Cancer Institute, 2013; NCCN, 
2015). However, the diagnostic criteria for CRF 
include fatigue, distress, or impairment due to 
fatigue, etiology related to cancer or cancer treat-
ment, and the exclusion of underlying psychiat-
ric or medical disorders. CRF is common, with 
studies revealing varied prevalence estimates 
ranging from 25% to 99% of patients with can-
cer experiencing this symptom, depending on 
the population and type of assessment (Bower, 
2007). Most common clinical manifestations of 
CRF are focused on fatigue, lack of energy, ex-
haustion, or impaired physical function that can 
affect physical or psychosocial well-being of the 
individual (Horneber et al., 2012).

The exact biological mechanisms of CRF are 
unknown; however, some proposed mechanisms 
associated with the symptom include 5-HT3 neu-
rotransmitter deregulation, disturbances in hypo-
thalamic regulation, dysregulation in circadian 
rhythm, skeletal muscle wasting, pro-inflamma-
tory cytokines, or dysregulation of inflammatory 
cytokines (Barsevick et al., 2013; Bower & Lam-
kin, 2013; Horneber et al., 2012; NCCN, 2015; 
Ryan et al., 2007). Genomic factors associated 
with inflammation have been linked to CRF prior 

to, during, and after treatment, particularly in the 
pro-inflammatory cytokine network (Bower & 
Lamkin, 2013). Molecular-genetics, particularly 
gene polymorphisms, have shown to possibly 
play an important role in the mechanism of CRF. 
One example is that of proinflammatory cytokine 
SNP that influences interleukin (IL) and/or tumor 
necrosis factor (TNF) genes (i.e., IL1B; IL-6; 
TNFα) and is associated with CRF both during 
and after treatment (Aouizerat et al., 2009; Bow-
er, 2007; Bower & Lamkin, 2013; Miaskowski 
et al., 2010). Alteration in pro-inflammatory 
cytokine production of IL6 and other inflamma-
tory markers has been linked with persistent fa-
tigue among breast cancer survivors (Bower et 
al., 2006; Collado-Hidalgo, Bower, Ganz, Cole, 
& Irwin, 2006). Persistent CRF among patients 
with breast cancer has also been found to be as-
sociated with increased activity of pro-inflam-
matory transcription factors NF-κB activity and 
decreased expression of glucorticoid receptor 
anti-inflammatory transcription factors (Bower, 
Ganz, Irwin, Arevalo, & Cole, 2011). The as-
sociation with CRF and cytokines, the proteins 
that mediate cell-to-cell communication, may be 
due to dysregulation of cytokines often attribut-
ed to cancer and cancer treatments that increase 
plasma levels of many cytokines, particularly the 
TNF-α and certain IL genes (Ahlberg, Ekmanb, 
Gaston-Johansson, & Mock, 2003; Ryan et al., 
2007). Cytokines are important for the develop-
ment and functioning of the immune response, 
and aberrant expression from genetic polymor-
phisms have been associated with overall disease 
and functionality (Smith & Humphries, 2009). 
Pro-inflammatory cytokines, particularly IL-1B, 
IL-6 and TNF-α, are thought to induce symptoms 
of fatigue via signaling of the central nervous 
system through varied somnogenic influence 
(Weschenfelder, Sander, Kluge, Kirkby, & Him-
merich, 2012).

The nuclear factor NF-κB, pro-inflammatory 
transcription factor, for example, is activated by 
the cancerous tumor microenvironment (Aggar-
wal, 2004) and, thus, pretreatment CRF may be 
due to tumorigenesis (Bower & Lamkin, 2013). 
Fatigue often occurs also during treatment, par-
ticularly due to chemotherapy or radiation ther-
apy; this effect has been associated with eleva-
tions in inflammatory markers secondary to the 
therapeutic intervention. For example, in one 
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study, changes in inflammatory markers, includ-
ing C-reactive protein and IL1 receptor antago-
nist, were found to be associated with fatigue 
symptoms among certain individuals with breast 
and ovarian cancer (Bower et al., 2009). CRF 
has been found to occur years after completion 
of therapy in breast cancer survivors and altera-
tions in proinflammatory markers also have been 
found among these individuals (Collado-Hidalgo 
et al., 2006; Orre et al., 2009). 

Besides pro-inflammatory genes, other ge-
nomic factors are currently being studied to de-
termine their impact on fatigue among cancer 
patients. For example, the relationship between 
dysfunction in certain mitochondrial genes has 
been found among prostate cancer patients re-
ceiving external beam radiation (Hsiao, Wang, 
Kaushal, & Saligan, 2013). Advances in genomic 
technologies will certainly change the face of un-
derstanding the molecular impact of genetics and 
CRF that will enhance predicting and managing 
the symptoms and improving outcomes. 

18.2.1.  Future Implications—Cancer Related 
Fatigue and Genomics

Although many studies have shown an associ-
ation with varied inflammatory markers and CRF 
among patients with cancer, causality has not 
been established and gaps in knowledge contin-
ue, warranting further research in this area (Sa-
ligan & Kim, 2012). Specifically, problems exist 
regarding measurement of CRF, exact under-
standing of the underlying biology of the symp-
tom, and clinical trials targeted towards CRF 
(Barsevick et al., 2013). However, future links 
between CRF and inflammatory markers may be 
a means to provide personalized/precision medi-
cine as a prognostic biomarker for fatigue among 
cancer patients or genetic predictors of fatigue 
for therapeutic management (Collado-Hidalgo et 
al., 2006; Jim et al., 2012), as well as future de-
velopment of effective treatments such as cyto-
kine antagonists targeting CRF (Bower & Lam-
kin, 2013). Further, because fatigue is a complex 
symptom with phenotypic heterogeneity, the in-
clusion of biobehavioral research of fatigue may 
provide clarity and contribute to the understand-
ing of CRF and to future development of genetic/
genomic interventions (Lyon, McCain, Pickler, 
Munro, & Elswick, 2011). The international and 

interdisciplinary GeneQoL Consortium is one 
means to improve patient outcomes regarding 
issues that impact quality of life, including that 
of fatigue (GeneQol Consortium, 2015; Sprang-
ers et al., 2009). This consortium was established 
to investigate genetic disposition of patient-re-
ported quality-of-life outcomes in order to gain 
insight on the impact of disease and treatment 
on patient outcomes (GeneQol Consortium, 
2015). Clinical implications of the consortium 
are based on obtaining genetic knowledge, in-
cluding understanding biological pathways that 
may impact quality of life (GeneQol Consor-
tium, 2015), and incorporating understanding 
of the biological and genetic mechanisms of 
CRF (Barsevick, Frost, Zwinderman, Hall, & 
Halyard, 2010). 

18.3.  GENOMICS AND PAIN 

Pain is universal and has been described since 
antiquity, and yet the biochemical pathways and 
pathophysiologic underpinnings of pain are only 
now beginning to be unraveled. An excellent re-
view of the history of pain and pain management 
can be found in the article by Meldrum (2003). 
Despite the lack of understanding and effective 
therapies to manage pain, helping patients and 
families cope with the manifestations of pain has 
been a central feature and core mission area for 
nurses since at least the 19th century, when Flor-
ence Nightingale discussed pain management in 
“Notes on Nursing” (Nightingale, 1860). Since 
then, many resources have been developed to im-
prove nursing competency in pain management, 
including a pain management nursing certifica-
tion awarded by the American Nurses Creden-
tialing Center; establishment of the American 
Society for Pain Management Nursing (ASPMN) 
in 1991, which publishes a journal dedicated en-
tirely to nursing management of pain; and nurs-
ing competencies focused on pain management 
(http://mbon.maryland.gov/Documents/pain_
management.pdf).

Over 100 million Americans suffer from pain 
every year (Institute of Medicine ([U.S.] Com-
mittee on Advancing Pain Research, 2011), and a 
recent study estimates that chronic pain is more 
expensive than cancer, heart disease, and dia-
betes, costing up to $635 billion a year (i.e., up 
to $300 billion in direct costs and $334 billion 



426 GENOMICS AND SYMPTOMATOLOGY

in lost productivity) (Gaskin & Richard, 2012). 
Pain, a very important signaling mechanism in 
animals, plays a significant role in survival, be-
cause it forces the animal to protect an injury un-
til it heals. Pain becomes chronic when the nox-
ious stimuli persists after healing is complete, 
evolving into pain without a purpose. The experi-
ence of pain is highly variable; some people who 
experience acute pain from a noxious agent will 
develop chronic pain whereas others, exposed to 
the same causative agent, will not (Mogil, 2012). 
The perception of pain is highly individualized 
and subjective as well, as indicated by pain rat-
ing scores used in research and clinical settings. 
Finally, there is marked individualized variabil-
ity in response to analgesics, with some people 
responding to very small doses and others requir-
ing much larger doses to feel an effect (Aubrun, 
Langeron, Quesnel, Coriat, & Riou, 2003). All of 
this variability raises questions about the possi-
bility that genetic factors could influence the ex-
perience of pain. More than 350 candidate genes 
have been associated with variability in pain 
sensitivity, and twin studies have clarified the 
heritability of pain in several specific conditions; 
however, to date, there are still many unanswered 
questions related to the basic genetic underpin-
nings of pain (Smith & Muralidharan, 2012). 

Several classification systems have been devel-
oped to guide pain assessment and management. 
Some of the most common categorization sys-
tems include stratifying pain as acute or chronic, 
based on the length of time it has been present, 
or by intensity (mild to moderate, or severe). 
Numeric pain scales were developed to attempt 
to capture pain intensity. Physiologic changes 
(nociceptive, neuropathic, and inflammatory) 
and manifestations based on the affected tissue 
types (skin, muscles, viscera, joints, tendons, and 
bones) have also been used to categorize pain. 
Some diseases have classic pain characteristics; 
therefore, pain has been clustered by syndrome 
(cancer, fibromyalgia, migraine, etc.) (University 
of Wisconsin, 2014). This chapter reviews just a 
few of the areas being explored in the genomics 
of pain.

A few rare single gene disorders are associ-
ated with alterations in pain sensation, such as 
paroxysmal pain or a complete inability to feel 
pain. Although at first glance the genes appear 
to involve seemingly unrelated functional pro-

tein classes, on closer inspection, almost all the 
pathways involve the SCN9A gene in one way 
or another (Mogil, 2012). SCN9A encodes for 
the alpha subunit of the NaV1.7 sodium channel, 
expressed primarily in peripheral sensory nerves 
that transmit pain, touch, and smell signals to 
the central nervous system (Mogil, 2012). The 
role that SCN9A plays in more common pain re-
sponses is less clear (Young, Lariviere, & Belfer, 
2012). Some studies have shown that variations 
in SCN9A alter pain responses (e.g., individu-
als with a G allele on SCN9A report lower pain 
scores compared with individuals having the 
less common A allele); other studies have been 
unable to consistently replicate those findings 
(Starkweather & Pair, 2013) 

Genome wide association studies (GWAS) 
are changing the landscape of genomic research. 
GWAS tools such as computerized databases 
containing the reference human genome se-
quence, a map of human genetic variation, and 
new analytic technologies that can cheaply, rap-
idly, and accurately analyze whole-genome are 
making it possible to locate the genes associated 
with common diseases, such as asthma, diabetes, 
and heart disease. Once a new gene has been lo-
cated, new strategies to detect, prevent, and/or 
treat a particular disorder can be developed. 

Despite the rapid advances made in fields such 
as cardiology, oncology and hematology using 
GWAS, research into the genes associated with 
pain has lagged for several reasons. Reasons in-
clude the subjective nature of pain, relatively low 
funding levels, and associated lack of interest 
from researchers (Mogil, 2012). More recently, 
however, more research has been done to ex-
amine the genetic underpinnings of pain associ-
ated with diseases such as migraine headaches, 
osteoarthritis, endometriosis, Crohn’s disease, 
and temporomandibular disorder (TMD) (Young 
et al., 2012). Some of the genes found in these 
studies include a mutation in ZNF429 and a gene 
upstream of the RHBDF2 gene, whose function 
is currently unknown. Although no polymor-
phisms have been found in any of the known 
opioid receptor genes, ethnic differences appear 
to play an important role, because the strongest 
effect in one study was country of origin (Mo-
gil, 2012). Despite the progress that has recently 
been made in understanding the genes associated 
with pain response, significant hurdles remain, 
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such as technology and data analysis limitations, 
explaining phenotypic heterogeneity, and the 
costs associated with conducting GWAS, which 
typically involve genotyping large numbers of 
people (Young et al., 2012).

18.3.1.  Epigenetics and Pain

As scientific understanding of epigenetic pro-
cesses has increased over the past decade, there 
has been a concurrent surge of research explor-
ing epigenetic mechanisms involved in regu-
lating the nervous system, particularly the epi-
genetic processes associated with memory and 
synaptic plasticity (Denk & McMahon, 2012). 
Recent studies have found that epigenetic control 
is particularly important in three distinct areas: 
peripheral inflammation, pain processing, and 
plasticity. 

When the body is exposed to a physical, chem-
ical, or biologic insult, an inflammatory response 
develops rapidly to remove or destroy the inju-
rious material, setting the stage for tissue repair 
and healing. Inflammation is commonly associat-
ed with pain, redness, heat, and swelling, which 
have been shown to increase healing, either be-
cause the injured person protects that area or be-
cause inflammatory cells, such as macrophages, 
produce high levels of insulin-like growth fac-
tor-1 (IGF-1), which increases the rate of heal-
ing and muscle regeneration (Lu et al., 2011). 
The inflammatory response is highly complex, 
involving genes involved in a number of dif-
ferent processes, such as antimicrobial defense, 
immune response, tissue repair, and remodeling. 
Epigenetic changes in genes regulating macro-
phage function may play a particularly impor-
tant role in inflammatory response, because they 
help macrophages change in response to differ-
ent infectious organisms (Bayarsaihan, 2011). 
Epigenetic changes in T  cells and monocytes, 
transcription factors found in several protein 
families (NF-κB, FOXP3, IRF, STAT), RE1si-
lencing transcription factors (REST), and his-
tones (i.e., histone H4 hyperacetylation) have 
all been shown to regulate inflammatory re-
sponse (Bayarsaihan, 2011; Selvi, Mohankrish-
na, Ostwal, & Kundu, 2010).

Inflammation persisting beyond the normal 
healing period is considered “chronic inflam-
mation” characterized by chronic infiltration of 

mononuclear immune cells and low antioxidant 
and high free radicals levels, creating an envi-
ronment in which tissue healing is occurring at 
the same time tissue is being damaged, become 
a self-perpetuating cycle of injury, repair and 
usually, pain (Khansari, Shakiba, & Mahmoudi, 
2009). Identifying the epigenetic mechanisms 
associated with the development of chronic pain 
may open the door to much needed advances in 
pain management (Denk & McMahon, 2012; 
Mogil, 2012). Epigenetic regulation of tissues 
in the nervous system is of particular interest, 
because these are the cells that generate and 
transmit pain signals, but also because the regen-
eration rate of individual neurons in the nervous 
system is very slow. The same neuron is likely 
to survive for decades, and because DNA is very 
resistant to change, epigenetic adjustments that 
occur over the life of the cell may be critical as 
they continually adapt to environmental stressors 
(Seo et al., 2013). A neuron’s use of epigenetics 
to adapt to the environment is particularly impor-
tant because such changes are reversible; there-
fore, if pain develops because of an epigenetic 
change, a drug that chemically “resets” the neu-
ron to its normal state might be a powerful thera-
peutic tool (Seo et al., 2013). Although there is 
evidence from animal studies to demonstrate that 
it is possible to modify epigenetic mechanisms 
with drugs (Geranton, 2012), more research 
needs to be done before human studies can begin 
to ensure that the drugs do not alter epigenetic 
mechanisms in other tissues (Crow, Denk, & Mc-
Mahon, 2013).

Reinforcing the idea that epigenetics plays 
an important role in the development and per-
ception of pain, data from genomic studies ex-
amining pain response is often contradictory. 
For example, ORPM1, a common m-opioid re-
ceptor variant, has been shown to increase ben-
dorphin binding and activation of g-proteins in 
some studies, but this effect is not found in all 
studies on a consistent basis. Similarly, in some 
studies, individuals with COMT variations were 
found to have greater sensitivity to pain, but the 
same association has not been seen in other stud-
ies (Bond et al., 1998; Kim et al., 2004; Zubieta 
et al., 2003). These inconsistencies suggest that 
factors, such as epigenetics, may play an impor-
tant role in pain phenotypes (Seo et al., 2013)

Opioids are used to treat pain on a routine ba-

18.3.  Genomics and Pain 
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sis, and many opioids are now approved for use, 
each of which has different efficacy and adverse 
response profiles based on the individual. If an 
individual has a poor response to one opioid, an-
other is usually tried in a trial and error fashion 
until the most effective drug is found. Because 
this random approach exposes individuals to ad-
verse effects and decreases quality of life, as the 
search for an effective analgesic agent continues, 
there has been considerable interest in finding 
the genetic factors that explain the variability in 
response to opioids (Branford, Droney, & Ross, 
2012). 

Several studies have found an association 
between the A118G SNP in OPRM1 and opioid 
dosing (Chou et al., 2006a; Chou et al., 2006b; 
Reyes-Gibby et al., 2007), but similar to the is-
sues with OPRM1 mentioned above, a meta-
analysis of genetic association studies concluded 
that the A118G SNP is inconsistently associated 
with pain-related phenotypes (Walter & Lotsch, 
2009). It is becoming clear that the genes associ-
ated with pain relief are not the same genes that 
influence the development of adverse effects, 
highlighting the need to carefully choose and de-
fine the phenotype being studied. It is also very 
likely that interactions among multiple genetic 
and environmental factors are playing important 
roles in the phenotype (Branford et al., 2012).

Acute pain transforms into chronic pain in a 
complex series of discrete pathophysiologic and 
histopathologic steps involving more than 2000 
gene changes in over 400 candidate genes. Broad-
ly, the process involves neurons that abandon the 
normal “modulated” response to pain (reversible 
activation of intracellular signal-transduction 
cascades) and adopt a more persistent “modified” 
response involving relatively permanent chang-
es to neuron activation (Voscopoulos & Lema, 
2010). A growing body of evidence suggests that 
nociceptor modifications can occur in response 
to psychological triggers, further complicating 
research efforts (Diatchenko, Fillingim, Smith, 
& Maixner, 2013).

Understanding the genomics of individual 
variability in pain sensitivity, analgesic response, 
adverse reactions, and triggers that transform 
acute to chronic pain is still in its infancy. Once 
the genomic roadmap has been created, the high-
ly complex interactions between the environment 
and the human genes that regulate the pain re-

sponse can then be explored, leading to a more 
effective and safe personalized approach to pain 
management. 

18.4.  NURSING ROLE AND 
SYMPTOMATOLOGY

Symptom management applies to nurses pre-
pared at every level and practicing in virtually 
every setting—from nurses providing direct care 
to patients in inpatient and outpatient settings to 
conducting genomic research and to nursing fac-
ulty and nurses leading the largest health care sys-
tems. Nurses working at the point of care should 
be familiar with the emerging genetic information 
that helps support decisions that can improve the 
care of an individual patient, the goal of precision 
and personalized care. Nurses in faculty roles are 
responsible for ensuring that students entering 
nursing are well informed about genetics and are 
prepared to use emerging genomic information 
to improve patient outcomes. Nurse researchers 
might want to focus their scientific efforts on ex-
ploring the biological and behavioral aspects of 
symptoms such as pain and fatigue, with the goal 
of developing new knowledge and new strate-
gies for improving patient health and quality of 
life (National Institute of Nursing Research, nd). 
Nurse administrators play a critical role, because 
they serve in key leadership roles as systems be-
gin to integrate genomic discoveries into clinical 
settings in a meaningful way. Their support can 
accelerate nurses’ use of genomic information 
as it continues to emerge from large population 
based studies. 
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