Genomic Essentials for Graduate Level Nurses

DEStech Publications, Inc.
439 North Duke Street
Lancaster, Pennsylvania 17602 U.S.A.

Copyright © 2016 by DEStech Publications, Inc.
All rights reserved

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Main entry under title:
Genomic Essentials for Graduate Level Nurses

A DEStech Publications book
Bibliography: p.
Includes index p. 433

Library of Congress Control Number: 2016932489
Table of Contents

Preface xi

List of Contributors xiii

Chapter 1. Introduction to Basic Genetics and Genomics 1
 SUSAN T. TINLEY
 1.1. Introduction 1
 1.2. DNA Structure and Replication 1
 1.3. Numerical and Structural Cytogenetic Abnormalities 6
 1.4. DNA and RNA Function 10
 1.5. Mutations in the Genetic Code 15
 1.6. Functional Effects of Mutations 18
 1.7. Mendelian Patterns of Inheritance 19
 1.8. Alterations to Mendelian Patterns 23
 1.9. Non-Mendelian Patterns of Inheritance 25
 1.10. Advances in Genomics and Pharmacogenomics 27
 1.11. References 28

Chapter 2. A Primer: Risk Assessment, Data Collection, and Interpretation for Genomic Clinical Assessment 31
 ANN H. MARADIEGUE and QUANETTA T. EDWARDS
 2.1. Definition of Terms Important for this Chapter 31
 2.2. Introduction 33
 2.3. Risk Assessment RAPID Approach—Step 1 Data Collection 35
 2.4. RAPID Risk Assessment Approach—Identification of Red Flags 53
 2.5. Pedigree Challenges—Confounding Factors in Inheritance Patterns 56
 2.6. RAPID 2.3: Step 3—Determination of Risk Probability 57
 2.7. RAPID 2.4: Step 4—Risk Assessment—Review Data and Communicate Risk to Client/Family 59
 2.8. RAPID 2.5: Step 5—Risk Management 60
 2.9. Nursing Implications of the Genomic Family History and Risk Assessment 60
 2.10. References 62

Chapter 3. Testing and Counseling for Genetic and Genomic Conditions 67
 SUSAN T. TINLEY
 3.1. Introduction 67
 3.2. Genetic Testing 67
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3. Cytogenetics</td>
<td>68</td>
</tr>
<tr>
<td>3.4. Molecular or DNA Testing</td>
<td>69</td>
</tr>
<tr>
<td>3.5. Purpose of Testing</td>
<td>71</td>
</tr>
<tr>
<td>3.6. Genetic Counseling</td>
<td>73</td>
</tr>
<tr>
<td>3.7. Elements of Informed Consent for Genetic Testing</td>
<td>75</td>
</tr>
<tr>
<td>3.8. Support of Client Coping and Use of Genetic/Genomic Information</td>
<td>77</td>
</tr>
<tr>
<td>3.9. Genomics and Genetic Counseling</td>
<td>80</td>
</tr>
<tr>
<td>3.10. Conclusion</td>
<td>80</td>
</tr>
<tr>
<td>3.11. References</td>
<td>80</td>
</tr>
</tbody>
</table>

Chapter 4. Ethical, Legal, and Social Implications in Genomic Advanced Practice Nursing

KATHLEEN SPARBEL and MARTHA TURNER

4.1. Introduction 85
4.2. Approaches in Bioethics 85
4.3. Ethical Standards and Ethical Competence in Nursing 88
4.4. Genetic and Genomic Competencies 88
4.5. Risk Assessment and Interpretation 90
4.6. Genetic Education, Counseling, Testing, and Results Interpretation 91
4.7. Clinical Management 93
4.8. Legal and Social Implications of Genetic and Genomic Information 94
4.9. Conclusion 96
4.10. References 96

Chapter 5. Essentials of Pharmacogenomics

JUNE ZHANG, YU LIU, JEFFERY FAN, BRADLEY T. ANDRESEN and YING HUANG

5.1. Introduction to Pharmacogenomics 99
5.2. Pharmacokinetics (PK), Pharmacodynamics (PD), and Pharmacogenomics 103
5.3. Pharmacogenomics of Individual Drugs 103
5.4. Overall Summary and Future Opportunities for Nurses 114
5.5. References 116

Chapter 6. Preconceptual and Prenatal Genomics

MICHELLE MUNROE, DIANE C. SEIBERT and DANA KNUTZEN

6.1. Introduction 123
6.2. Assessing Risk and the Family Health History (FHH) 123
6.3. Preconception Care 124
6.4. Epigenetics 125
6.5. Smoking 126
6.6. Seizure Disorder 126
6.7. Neural Tube Defect (NTD) 126
6.8. Genetic Conditions Affecting Fertility 127
6.9. Congenital Adrenal Hyperplasia 127
6.10. Fragile X Syndrome 128
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.11. Turner Syndrome</td>
<td>129</td>
</tr>
<tr>
<td>6.12. Klinefelter Syndrome</td>
<td>130</td>
</tr>
<tr>
<td>6.13. Cystic Fibrosis</td>
<td>130</td>
</tr>
<tr>
<td>6.15. Preimplantation Diagnostic Testing (PGD)</td>
<td>131</td>
</tr>
<tr>
<td>6.16. Maternal Genetic Conditions That May Adversely Affect Pregnancy Outcomes</td>
<td>131</td>
</tr>
<tr>
<td>6.17. Gestational Diabetes</td>
<td>131</td>
</tr>
<tr>
<td>6.18. Sickle Cell Disease</td>
<td>132</td>
</tr>
<tr>
<td>6.19. Cystic Fibrosis</td>
<td>132</td>
</tr>
<tr>
<td>6.20. Maternal Phenylketonuria (PKU)</td>
<td>133</td>
</tr>
<tr>
<td>6.21. Pregnancy Complications with a Genomic Etiology</td>
<td>133</td>
</tr>
<tr>
<td>6.22. References</td>
<td>136</td>
</tr>
<tr>
<td>Chapter 7. Newborn Screening</td>
<td>141</td>
</tr>
<tr>
<td>KAREN L. ZANNI</td>
<td></td>
</tr>
<tr>
<td>7.1. Introduction</td>
<td>141</td>
</tr>
<tr>
<td>7.2. History of Newborn Screening</td>
<td>141</td>
</tr>
<tr>
<td>7.3. New Technologies</td>
<td>143</td>
</tr>
<tr>
<td>7.4. Ethical, Legal, Social, and Practical Considerations</td>
<td>144</td>
</tr>
<tr>
<td>7.5. Implications for Educators, Researchers, and Administrators</td>
<td>146</td>
</tr>
<tr>
<td>7.6. References</td>
<td>147</td>
</tr>
<tr>
<td>Chapter 8. Genetic Considerations in Childhood</td>
<td>149</td>
</tr>
<tr>
<td>HEATHER L. JOHNSON, JOANNA SPAHIS and DALE H. LEA</td>
<td></td>
</tr>
<tr>
<td>8.1. Introduction</td>
<td>149</td>
</tr>
<tr>
<td>8.2. Assessment of Children with Atypical Features, Growth, or Development</td>
<td>149</td>
</tr>
<tr>
<td>8.3. Dysmorphology</td>
<td>150</td>
</tr>
<tr>
<td>8.4. Common Genetic Conditions</td>
<td>150</td>
</tr>
<tr>
<td>8.5. Growth</td>
<td>154</td>
</tr>
<tr>
<td>8.6. Short Stature</td>
<td>157</td>
</tr>
<tr>
<td>8.7. Tall Stature</td>
<td>161</td>
</tr>
<tr>
<td>8.8. Atypically Developing Children</td>
<td>164</td>
</tr>
<tr>
<td>8.9. The Six Core Elements of Health Care Transition</td>
<td>170</td>
</tr>
<tr>
<td>8.10. Using Transition Tools and Checklists</td>
<td>170</td>
</tr>
<tr>
<td>8.11. Summary</td>
<td>172</td>
</tr>
<tr>
<td>8.12. References</td>
<td>173</td>
</tr>
<tr>
<td>Chapter 9. Aging and Genomics: Perspectives for the Graduate Level Nurse</td>
<td>177</td>
</tr>
<tr>
<td>DEBRA L. SCHUTTE</td>
<td></td>
</tr>
<tr>
<td>9.1. Introduction</td>
<td>177</td>
</tr>
<tr>
<td>9.2. The Etiology of Aging</td>
<td>178</td>
</tr>
<tr>
<td>9.3. Aging, Genomics, and the Graduate Level Nurse</td>
<td>181</td>
</tr>
</tbody>
</table>
9.4. Summary 185
9.5. References 186

Chapter 10. Respiratory Disorders .. 189
 RAN HE and JULIA EGGERT
 10.1. Introduction 189
 10.2. Single-Gene Disorders 189
 10.3. Complex Disorders 194
 10.4. Case Study 203
 10.5. References 205

Chapter 11. Part 1—Genomics of Complex Cardiovascular Diseases 209
 JENNIFER R. DUNGAN, ALLISON A. VORDERSTRASSE,
 SARA M. JORDAN and ERICA A. JULIAN
 11.1. Introduction 209
 11.2. Coronary Artery Disease (or Coronary Heart Disease) 210
 11.3. Genetic Background 210
 11.4. Genome-Wide Association Studies (GWAS) for CAD 210
 11.5. The 9p21 Candidate Locus for CAD 211
 11.6. Early-Onset CAD 213
 11.7. Atherosclerosis/Arteriosclerosis 214
 11.8. Dyslipidemias 214
 11.9. Events: Myocardial Infarction and Survival 214
 11.10. Gene Expression/Transcriptomics 215
 11.11. Metabolomics 217
 11.12. Pharmacogenomics Related to CAD Management 217
 11.13. Essential Hypertension 218
 11.14. Genetic Basis for Essential Hypertension 218
 11.15. Early Candidate Genes in Hypertension 218
 11.16. Genome Wide Associations for Essential Hypertension 220
 11.17. Gene Expression/Transcriptomics 222
 11.18. Metabolomics 222
 11.19. Pharmacogenetics Related to Management of Essential Hypertension 223
 11.20. Genomic Platforms and Their Clinical Utility 223
 11.21. Nursing Implications Related to Genomic Testing Platforms 228
 11.22. Conclusions 229
 11.23. Future Directions 229
 11.24. References 230

Chapter 11. Part 2—Single Gene Cardiovascular Disorders 239
 SARAH RACE and MEGAN GROVE
 11.25. Introduction 239
 11.27. Role of Family History Taking in Inherited Single Gene Cardiovascular
 Disorders 241
Table of Contents

11.28. Structural Inherited Single Gene Cardiovascular Disorders 242
11.29. Nonstructural Single Gene Cardiovascular Disorders 244
11.30. Future Genomic Technologies in Inherited Single-Gene Cardiovascular Care 249
11.31. Summary 250
11.32. References 250

Chapter 12. Genetics in Hematology ... 255

 EDWARDA M. BUDA-OKREGLAK and DIANE C. SEIBERT

12.1. Introduction 255
12.2. Red Blood Cell Disorders 255
12.3. White Blood Cell (WBC) Disorders 264
12.4. Platelet Disorders 268
12.5. Coagulation Disorders 272
12.6. Inherited Bone Marrow Failure Syndromes (IBMFS) 277
12.7. Acquired Bone Marrow Failure Syndromes (ABMFS) 279
12.8. Hematologic Neoplasms 280
12.9. References 285

Chapter 13. Genetics and Genomics of Neurologic Disorders 289

 SHEILA A. ALEXANDER

13.1. Introduction to the Nervous System 289
13.2. Single Gene Disorders of the Nervous System 289
13.3. Common Complex Disorders of the Central Nervous System 307
13.4. Conclusion 317
13.5. References 317

Chapter 14. Endocrine Disorders ... 327

 CATHERINE LING and LUCIA NOVAK

14.1. Introduction 327
14.2. Inheritance Patterns 327
14.3. Assessing risk 333
14.4. Pharmacogenomics 339
14.5. Genetic Testing, Counseling, Ethical Implications 340
14.6. Acknowledgments 340
14.7. References 340

Chapter 15. Cancer Genomics: Current and Future Concepts to Define Health Care Practices and Personalized Care .. 345

 QUANNETTA T. EDWARDS, ANN H. MARADIEGUE and KORY W. JASPERSON

15.1. Definition of Terms Associated with Cancer Genetics and Used in this Chapter 345
15.2. Introduction 346
15.3. Carcinogenesis—A Primer 348
15.4. Hereditary Cancer Syndromes 362
15.5. Hereditary Colon Cancer—Lynch Syndrome 378
15.6. Genomics of Cancer—New and Future Advances and Technologies 389
15.7. Utilization of the Rapid Approach: Selected Breast Cancer Case 394
15.8. References 397

Chapter 16. Genomics in Nursing Education, Research, Leadership, and Practice .. 409
SUSAN T. TINLEY, QUANNE TTA T. EDWARDS, ANN H. MARADIEGUE
and DIANE C. SEIBERT
16.1. Introduction 409
16.2. Nursing Education 409
16.3. Nursing Research 412
16.4. Nursing Leadership 413
16.5. Nursing Practice 415
16.6. References 415

Chapter 17. Genomic Technologies .. 417
YVETTE P. CONLEY
17.1. Introduction 417
17.2. Next Generation Genome Sequencing 417
17.3. Gene Expression Profiling 418
17.4. Epigenomics 419
17.5. Conclusion 421
17.6. References 421

Chapter 18. Genomics and Symptomatology .. 423
QUANNE TTA T. EDWARDS, SUSAN T. TINLEY, DIANE C. SEIBERT
and ANN H. MARADIEGUE
18.1. Introduction 423
18.2. Genomics and Cancer-Related Fatigue 423
18.3. Genomics and Pain 425
18.4. Nursing Role and Symptomatology 428
18.5. References 428

Index 433
The purpose of this book is to improve the genomic competency of nurses prepared at the graduate level. The more informed graduate level nurses are about the rapidly evolving field of genomics, the more likely they are to apply it at the point of care, and the more prepared they will be to engage in conversations about how, when and where genomic technologies should be used in healthcare systems.

In 2009, a group of fifteen graduate nurses with genetics/genomics expertise from around the U.S. began a 2-year process to develop "The Essential Genetic/Genomic Competencies for Nurses with Graduate Degrees," an expanded set of genetic/genomic competencies tailored to meet the needs of nurses prepared at the graduate level. The competencies have two major domains, with each divided into seven major categories. The first domain, Professional Practice, includes (1) Risk Assessment & Interpretation; (2) Genetic Education, Counseling, Testing and Results Interpretation; and (3) Clinical Management. The second domain, Professional Responsibilities, comprises: (4) Ethical, Legal and Social Implications (ELSI); (5) Professional Role; (6) Leadership; and (7) Research.

The present volume evolved from and is based on constructs found in the graduate essentials mentioned above, and many of the chapters are authored by nurses who participated in developing the competencies. A number of chapters address the competencies in a clinical setting, while others, e.g., chapters 4 and 16, are focused exclusively on a single category within the competencies. The first five chapters provide the scientific underpinnings for genomic practice, which are Basic Genetic/Genomic Concepts, Risk Assessment, Genetic Testing and Counseling, ELSI and Pharmacogenomics. The next four chapters present genomic issues across the human lifespan: Preconceptual/Prenatal, Newborn Screening, Pediatrics and Aging. The following six chapters review genetic and genomic contributions to disorders of selected body systems: Respiratory, Cardiology, Hematology, Neurology, Endocrine and Cancer. The next two chapters discuss issues unique to nursing, Genomics in Nursing Research, Practice, Administration & Education and Genomics and Symptomatology. The final chapter, Genomic Technologies, offers a glimpse of genomic advances that are being translated into clinical application. Because genomic science is evolving so quickly, new information was emerging daily as this book was being prepared. Each chapter therefore should be considered an orientation and introduction to a topic, in contrast to a comprehensive resource.

We would like to thank the talented inter-professional team of nurses, physicians, researchers, scientists, geneticists and genetic counselors who worked with us to turn an idea into reality. Inter-professional education and collaboration, endorsed by the Institute of Medicine and the American Association of Colleges of Nursing are essential to improve outcomes in today’s healthcare environment. This book’s collaborating authors represent a highly experienced group of health care professionals from a number of different specialties, including: advanced practice registered nurses (many who have received post-doctoral training at the National Institutes of Health or National institute of Nursing Research), board-certified advanced genetics nurses, certified genetic counselors, physicians, nurse ethicists, molecular geneticists, nurse genetic scientists, nurse academicians, nursing leaders and administrators. Working in hospitals, specialty clinics, universities, laboratories and pharmacies throughout the world, these specialists devoted many hours to researching and writing chapters, sending references we may never have found otherwise, and furnishing valuable insight and support across the entire life of this writing.
project. We wholeheartedly thank each and every contributor.

We hope readers find this book useful, informative and interesting. In creating it our ultimate goal has been to produce a resource that will improve healthcare outcomes for individuals, their families and communities by moving nursing one step closer to the further goals of personalized healthcare and precision medicine.

DIANE C. SEIBERT
QUANNETTA T. EDWARDS
ANN H. MARADIEGUE
SUSAN T. TINLEY
List of Contributors

Sheila A. Alexander, Ph.D, RN
Bradley T. Andresen, Ph.D, FAHA
Edwarda M. Buda-Okreglak, MD, FACP
Yvette P. Conley, Ph.D
Jennifer R. Dungan, Ph.D, RN
Julia Eggert, Ph.D, GNP-BC, AOCN
Jeffery Fan, RN
Megan Grove, MS, LCGC
Ran He, Ph.D, AGN-BC
Ying Huang, Ph.D
Kory W. Jasperson, MS, CGC
Heather L. Johnson, DNP, FNP-BC, FAANP
Sara M. Jordan, BA, BSN, RN
Erica A. Julian, RN, BSN

Dana Knutzen, MS, CGC
Dale H. Lea, RN, MPH, CGC
Catherine Ling, Ph.D, FNP-BC, FAANP
Yu Liu, Ph.D, RN
Michelle Munroe, DNP, COL, AN, CNM
Lucia Novak, MSN, ANP-BC, BC-ADM
Sarah Race, RN, MSN, CNS
Debra L. Schutte, Ph.D, RN
Joanna Spahis, RN, CNS, APNG
Kathleen Sparbel, Ph.D, RN, FNP-BC
Martha Turner, Ph.D, RN-BC
Allison A. Vorderstrasse, DNSC, APRN
Karen L. Zanni, MSN, ARNP-BC, RN
June Zhang, Ph.D, RN
Introduction to Basic Genetics and Genomics

SUSAN T. TINLEY, Ph.D, RN, CGC (RET)

Objectives:

- Describe the difference between “genetics” and “genomics”.
- Explain the similarities and differences between mitosis and meiosis.
- Discuss normal and abnormal chromosome structure.
- Explain how DNA and RNA function in creation of gene products.
- Describe various alterations in the genetic code and their functional effects.
- Discuss details of each of the patterns of inheritance.

1.1. INTRODUCTION

Basic genetic/genomic concepts need to be understood to meet competencies outlined in the Essential Genetic and Genomic Competencies for Nurses with Graduate Degrees (Greco, Seibert & Tinley, 2012). This chapter provides a foundation for the remaining chapters in this book by offering a review of the basic principles of “genetics,” and introduces the concept of “genomics.” The traditional science of “genetics” is focused on exploring and explaining the impact of individual (or single) gene or chromosome changes, most of which are individually quite rare, on health. The broader term, “genomics,” considers the interactions between and within genes, regulatory sequences, and the environment. Genomics research is improving our understanding of genetic disorders, common complex health problems such as diabetes and heart disease, and disease prevention and treatment response. The basic science of “genetics” has evolved into “genomic healthcare.” For simplicity and continuity, the term genomics will be used throughout this book except when addressing specific genetic concepts or conditions. Because the genomics education of our readers may vary substantially, there are references at the end of the chapter to resources that can provide additional information. The reader is encouraged to refer back to these resources in the future, to stay current with the rapidly changing field of genomics and its impact on specific areas of nursing practice, administration, research, and education.

1.2. DNA STRUCTURE AND REPLICATION

1.2.1. Structure of DNA and Chromosomes

Deoxyribonucleic acid (DNA) is the molecule that provides the genetic instructions for the development, growth, and ongoing functioning of any human being. There are two different cellular locations for DNA, in the nucleus (nuclear DNA [nDNA]) and in the mitochondria (mitochondrial DNA [mtDNA]). The nucleus is the location for the vast majority of human DNA; except in areas where both types of DNA are being discussed, it can be assumed that DNA is used to refer to DNA in the nucleus.

DNA is composed of two strands of polynucleotides. Each nucleotide is made up of a five-carbon sugar, a phosphate, and a nitrogenous base. The appearance of DNA has been compared to a ladder which is coiled around core units of eight histones to provide support and stability to the structure. The two sides of the ladder are composed of the alternating sugar and phosphate, and each sugar phosphate unit has a base attached. Hydrogen bonding between the bases holds the two strands together, forming the rungs of the ladder. One of the bases in a pair is larger, a purine, and the other is smaller, a pyrimidine. The purines
INTRODUCTION TO BASIC GENETICS AND GENOMICS

are adenine and guanine (A and G) and the pyrimidines are cytosine and thymine (C and T). The pyrimidine thymine always pairs with the purine adenine (A and T) and the pyrimidine cytosine always pairs with the purine guanine (C and G). This consistent pairing is essential when the DNA replicates itself during cell division and during transcription and translation of the DNA code into proteins. A gene is a unit of the DNA that provides the code for a protein (Figure 1.1).

The nuclear DNA, which will be the primary focus of this chapter, is packaged into 23 pairs of chromosomes. Within each pair, 1 chromosome is maternally derived and the other is paternally derived. Of the 23 pairs of chromosomes, 22 are the same for males and females and are called autosomes, numbered “1 to 22,” with 1 being largest and 22 the smallest. The 23rd pair of chromosomes determines the sex of the individual: XX for females and XY for males. The Y chromosome carries approximately 50 genes (National Library of Medicine [NLM] [U.S.], 2014a), whereas the X chromosome, which is much larger, carries approximately 2,000 genes (NLM [U.S.], 2014b).

The chromosome consists of two arms joined at a constriction point called the centromere. The shorter of the two arms is the p arm (for “pe-
tite”) and the longer arm is the q arm. Some of the pairs of chromosomes are the same size, but the centromeres are located in different positions on the chromosome. Chromosomes with centromeres located in the center (chromosomes 1, 3, 16, 19, and 20) are called metacentric; those with off-center centromeres (chromosomes 2, 4 to 12, 17, 18, X, and Y) are called submetacentric; and those with centromeres at the tip of the chromosome (chromosomes 13, 14, 15, 21, and 22) are acrocentric (Figure 1.2).

Another way of differentiating the chromosome pairs, in addition to their size and centromere placement, is by the distinctive patterns of DNA.
light and dark bands (Figure 1.3). The tips of the chromosomes (similar to shoelace tips) are called telomeres (Figure 1.1), which act as a cap to prevent the chromosome from unraveling. Telomeres are made of many repeats of the sequence “TTAGGG,” and each time a cell divides, 20 to 30 of these TTAGGG repeats are lost. When all the telomere repeats are completely gone, the cell dies. Germ cells produce an enzyme called “telomerase,” which restores the telomeres to their original length so that at fertilization, there are sufficient repeats for the new individual’s lifetime (Read & Donnai, 2011).

1.2.2. The Cell Cycle

Each somatic cell goes through a cycle from its formation to its division into two daughter cells. There are four phases in each cell cycle: Gap1 (G1), S, Gap2 (G2), and M (Figure 1.4). During G1, the longest phase, individual chromosomes cannot be distinguished, because the DNA is unwound (extended) to allow easy access to the genetic code for protein production.

During the “S” phase, the DNA is reproduced in the process of replication (Figure 1.5) so that each daughter cell receives an exact copy of the DNA from the original cell. During replication, the hydrogen bonds between the bases break so that the two strands of the DNA can separate. The bases of each strand attract new nucleotides with complementary bases, and hydrogen bonds form between the bases to hold the new strand to the old strand. Replication does not occur at the same time in all of the chromosomes or even within any given chromosome, but by the end of the S phase, all of the chromosomes are completely reproduced. Each of the original two DNA strands have been a template for a new complete molecule of DNA that is an exact copy of the original. The two identical copies of the chromosome are called sister chromatids, and they are held together at the centromere.

In the G2 phase, any replication errors that occurred during the S phase are detected and repaired. If the errors are too numerous or severe, programmed cell death (apoptosis) occurs. Malfunction in the process of apoptosis can lead to the development of cancer, which is discussed in greater depth in Chapter 15.

1.2.3. Mitosis

The M phase of the cell cycle is the phase in which the cell divides, forming 2 new cells. In somatic cells, this phase is called mitosis (Figure 1.6). During the first stage of mitosis (prophase), the chromosomes become tightly coiled and visible under a microscope. The nuclear membrane disappears and spindle fibers develop at the centrioles at either side of the cell, and the free end of the spindle fibers attach to the centromeres. During the second stage (metaphase), the chromosomes are highly condensed and most easily visualized under the microscope. During metaphase, the chromosomes are arranged along the equatorial plane of the cell, and the spindle fibers begin to contract, pulling the sister chromatids apart. During the third phase (anaphase), all the centromeres divide and the spindle fibers pull one sister chromatid to one side of the cell and the other to the opposite side. At the end of anaphase, there should be 92 chromosomes, with 46 on either side of the cell. During the next phase (telophase), a nuclear membrane develops around each group of 46 chromosomes, which are beginning to extend into indistinguishable

FIGURE 1.4. Cell Cycle. (Figure from National Human Genome Research Institute (NHGRI) Digital Media Database. Darryl Leja/NHGRI/NIH. Available at http://www.genome.gov/dmd/img.cfm?node=Photos/Graphics&id=85276.)
structures again. The division of the cytoplasm (cytokinesis) follows, forming two daughter cells which are identical to the original cell. These two daughter cells then enter interphase, which corresponds to G1, S, and G2 of the cell cycle.

1.2.4. Meiosis

A different series of cell division steps occurs during meiosis, ultimately reducing the number of chromosomes in germ cells (sperm and ova) from 23 pairs (46 individual chromosomes) to 23 single chromosomes (Figure 1.7). To accomplish this, two cell divisions are required. As in mitosis, during meiosis, DNA replicates during prophase I, which occurs prior to the first meiotic division. In meiosis, prophase I is divided into five periods:

- **Leptokene:** DNA becomes condensed, but the two chromatids are so tightly associated, they cannot be distinguished.
- **Zygotene:** Chromosomes pair up (e.g., maternal chromosome 12 pairs up with paternal chromosome 12) and are held tightly together by the synaptonemal complex.
- **Pachytene:** Chromosomes condense even further and some genetic material from one chromosome trades places with genetic material of the other chromosome, creating four unique chromatids. This exchange is called crossing over or recombination.
- **Diplotene:** The synaptonemal complex disappears and the chromosomes in each pair start to separate. The two chromatids of each chromosome are still held together at the centromere.
- **Diakinesis:** The chromosomes reach maximum condensation.

After prophase, the division steps proceed as in mitosis: the nuclear membrane dissolves, and the chromosome pairs align along the cells equatorial plane (metaphase I). Each pair then splits, and the individual chromosomes assort
randomly, with some paternally derived chromosomes going to one pole and others to the other side, and similarly with the maternally derived chromosomes (anaphase I). Because of random assortment of maternally and paternally derived chromosomes, there are 2^{23} or > 8 million possible chromosomal combinations. This tremendous potential for diversity is further increased by the crossing over that occurs during the pachytene period of prophase I (Clancy, 2008). The chromosomes group at either pole during telophase I and then the cell divides. The cell enters into a short interphase prior to beginning meiosis II.

During prophase of meiosis II, the nuclear membrane disappears and the spindle apparatus forms. In metaphase II, the chromosomes line up in the center of the cell, and in anaphase II, the centromeres of the chromosomes separate as the spindle fibers pull the sister chromatids apart toward opposite poles. In telophase II, the nuclear membrane reforms and cytokinesis occurs so that there are now four cells, each having 23 chromosomes with a single chromatid. At the time of fertilization, the nuclei of the sperm and ovum join into one nucleus with 23 pairs of chromosomes, a unique combination of genetic information from mother and father.

1.3. NUMERICAL AND STRUCTURAL CYTOGENETIC ABNORMALITIES

Cytogenetics is the field that focuses on the examination of chromosomes for correct number and structure. A basic understanding of chro-
mosomal abnormalities is particularly important when caring for prenatal and pediatric populations and in oncology settings, because chromosomal abnormalities occur during reproduction and may arise in malignant cells, particularly those found in leukemia, lymphoma, and some solid tumors.

1.3.1. Nondisjunction

Meiosis usually produces germ cells with 23 chromosomes ready for fertilization with another germ cell with its own 23 chromosomes. Occasionally, however, a nondisjunction error occurs and chromosomes or chromatids fail to separate. Nondisjunction errors can occur either during the first or second meiotic division. If the nondisjunction occurs in the first meiotic division, one daughter cell receives an extra chromosome and the other is missing one, and when these cells go through the second meiotic division, the error is passed on to their respective daughter cells.
INTRODUCTION TO BASIC GENETICS AND GENOMICS

If nondisjunction occurs during the second division, the chromatids of one chromosome fail to separate, and two copies go to one cell and none to the other.

If a germ cell with 24 chromosomes is fertilized, it will contain three copies of one chromosome (trisomy). Conceptuses with Trisomy 13, 18, and 21 may survive to birth, whereas trisomies of other autosomes are lethal. Chromosome 13 has approximately 300 to 400 genes that code for proteins (NLM, 2014c). chromosome 18 has approximately 200 to 300 genes (NLM, 2014d), and chromosome 21 has approximately 200 to 300 genes (NLM, 2014e), fewer than any of the other autosomes. If a germ cell with 22 chromosomes is fertilized (monosomy), the embryo rarely survives because too little genetic information is usually lethal. The one monosomy that is compatible with survival is Monosomy X (Turner syndrome [TS]), although it is estimated that up to 99% of Monosomy X conceptuses miscarry in the first or second trimester. It is theorized that those that survive to term have a mosaicism (Wolff, Van Dyke, & Powell, 2010).

1.3.2. Genetic Mosaicism

Genetic mosaicism is the result of a chromosomal nondisjunction or DNA mutation that develops during a very early mitotic division after fertilization. The individual develops with both normal and abnormal cell lines. Individuals affected with a chromosomal mosaicism usually are more mildly affected (milder phenotype) than someone with a meiotic nondisjunction, because at least some of their cells have a normal chromosomal complement. Females with TS (45 X) often have a mosaic form of the disorder.

1.3.3. Translocations

Some chromosomal abnormalities are due to translocations of which there are two major

![Figure 1.8. Reciprocal translocation. (Figure from National Institutes of Health. National Human Genome Research Institute. Digital Media Database. Daryl Leja/ NHGRI/NIH. Available at http://www.genome.gov/dmd/img.cfm?node=Photos/Graphics&id=85253.)](image-url)
types, Robertsonian and reciprocal. Robertsonian translocations develop when the centromere of one acrocentric chromosome fuses with the centromere of another acrocentric chromosome. The two most common types are Robertsonian and reciprocal translocations.

Robertsonian translocations should be considered when a couple has more than one child with Down syndrome (DS). Although DS is most frequently due to a nondisjuncional error, about 5% of DS is the result of an unbalanced Robertsonian translocation. In an unbalanced Robertsonian translocation of chromosomes 14 and 21, the offspring inherits the translocated chromosome as well as two normal 21s and one normal 14. The embryo has a normal number of chromosomes (46), but because of the fused 21 and 14, it inherits three copies of chromosome 21 and manifests the typical DS phenotype.

Standard nomenclature for translocation DS in

Genomics and Symptomatology

QUANNETTA T. EDWARDS, Ph.D, FNP-BC, WHNP-BC, AGN-BC, FAANP
SUSAN T. TINLEY, Ph.D, RN, CGC (RET)
DIANE C. SEIBERT, Ph.D, ARNP, FAANP, FAAN
ANN H. MARADIEGUE, Ph.D, FNP-BC, FAANP

Objectives:
• Discuss the impact of genomics on cancer related fatigue.
• Discuss the genes associated with pain.
• Explain the role of nursing regarding genomics and symptomatology.

18.1. INTRODUCTION

An individual’s genome impacts the trajectory of their health and illness throughout life. Thus far, the focus of this book has been on the impact of genomics as it relates to an individual’s response to drugs, their risk for developing diseases based on their family history, or as a result of shared genetic and environmental factors. Beyond health, illness, and the effectiveness of drugs, genomics also influences how an individual experiences a particular disorder—or the symptomatology of that condition. Research examining the genetics of common symptoms offers the promise of reducing adverse symptoms and improving quality of life, which is particularly important, because symptom management is a key function for nursing.

In this chapter, brief overviews of two common symptoms are discussed. These symptoms are cancer-related fatigue and pain, as each of these symptoms have been shown to be influenced by genomic discoveries. The role of genomic variants (i.e., single nucleotide polymorphisms [SNPs]) influencing the onset, duration, or severity of symptoms, as well as how they influence therapeutic responses in preventing, alleviating, or eliminating patient’s symptoms, will be discussed. Where applicable, other influences that may potentiate the effects of genomic variants in symptom manifestation and treatment will be described. Genomic advances in symptom management will help ensure that the right person receives the right therapy (personalized or precision health care), will reduce adverse effects, and will improve both quality of life and overall health outcomes.

18.2. GENOMICS AND CANCER-RELATED FATIGUE

Fatigue is a symptom manifested in patients that is associated with a wide range of diseases and syndromes that often affect individual’s physical, social, and mental functioning (Landmark-Hoyvik et al., 2010). It is also one of the most commonly reported symptoms in individuals diagnosed with cancer, often resulting in increased stress and anxiety and other health-related quality of life issues including, but not limited to, impaired physical performance, inactivity, helplessness, sleep disturbances, lack of appetite, and/or depression (Escalante, Kallen, Valdres, Morrow, & Manzullo, 2010; Horneber, Fischer, Dimeo, Ruffer, & Weis, 2012; Saligan & Kim, 2012). Cancer-related fatigue (CRF) is defined as a “distressing, persistent, subjective sense of tiredness or exhaustion related to cancer or cancer treatment that is not proportional to recent activity and interferes with usual functioning” (National Comprehensive Cancer Network (NCCN), 2015m p. MS-3). The symptoms of
CRF can occur during and after treatment of the cancer and are often attributed to treatment regimens, such as cytotoxic chemotherapy, radiation therapy, or other biological treatments. However, CRF can vary, occurring any time in the course of disease, and may be self-limiting or persisting for many years even after treatment (Bower et al., 2006; Horneber et al., 2012). For example, in one longitudinal study of breast cancer survivors, approximately 34% of the participants reported fatigue 5 to 10 years after diagnosis (Bower et al., 2006). Similar effects regarding fatigue persistence after diagnosis and treatment have been reported (Husson et al., 2013; Hwang et al., 2014).

Fatigue among patients with cancer can be associated with multifactorial etiologies and manifest in a myriad of clinical features (Horneber et al., 2012; NCCN, 2015). Contributing factors to fatigue include pain, emotional distress, sleep disturbances, and co-morbidities such as anemia; poor nutrition; physical inactivity; medication side effects; alcohol and/or substance abuse; therapeutic management with cytotoxic, biologic, or radiation therapy; or other medical conditions (National Cancer Institute, 2013; NCCN, 2015). However, the diagnostic criteria for CRF include fatigue, distress, or impairment due to fatigue, etiology related to cancer or cancer treatment, and the exclusion of underlying psychiatric or medical disorders. CRF is common, with studies revealing varied prevalence estimates ranging from 25% to 99% of patients with cancer experiencing this symptom, depending on the population and type of assessment (Bower, 2007). Most common clinical manifestations of CRF are focused on fatigue, lack of energy, exhaustion, or impaired physical function that can affect physical or psychosocial well-being of the individual (Horneber et al., 2012).

The exact biological mechanisms of CRF are unknown; however, some proposed mechanisms associated with the symptom include 5-HT3 neurotransmitter deregulation, disturbances in hypothalamic regulation, dysregulation in circadian rhythm, skeletal muscle wasting, pro-inflammatory cytokines, or dysregulation of inflammatory cytokines (Barsevick et al., 2013; Bower & Lamkin, 2013; Horneber et al., 2012; NCCN, 2015; Ryan et al., 2007). Genomic factors associated with inflammation have been linked to CRF prior to, during, and after treatment, particularly in the pro-inflammatory cytokine network (Bower & Lamkin, 2013). Molecular-genetics, particularly gene polymorphisms, have shown to possibly play an important role in the mechanism of CRF. One example is that of proinflammatory cytokine SNP that influences interleukin (IL) and/or tumor necrosis factor (TNF) genes (i.e., IL1B; IL-6; TNFa) and is associated with CRF both during and after treatment (Aouizerat et al., 2009; Bower, 2007; Bower & Lamkin, 2013; Miaskowski et al., 2010). Alteration in pro-inflammatory cytokine production of IL6 and other inflammatory markers has been linked with persistent fatigue among breast cancer survivors (Bower et al., 2006; Collado-Hidalgo, Bower, Ganz, Cole, & Irwin, 2006). Persistent CRF among patients with breast cancer has also been found to be associated with increased activity of pro-inflammatory transcription factors NF-κB activity and decreased expression of glucorticoid receptor anti-inflammatory transcription factors (Bower, Ganz, Irwin, Arevalo, & Cole, 2011). The association with CRF and cytokines, the proteins that mediate cell-to-cell communication, may be due to dysregulation of cytokines often attributed to cancer and cancer treatments that increase plasma levels of many cytokines, particularly the TNF-α and certain IL genes (Ahlberg, Ekmanb, Gaston-Johansson, & Mock, 2003; Ryan et al., 2007). Cytokines are important for the development and functioning of the immune response, and aberrant expression from genetic polymorphisms have been associated with overall disease and functionality (Smith & Humphries, 2009). Pro-inflammatory cytokines, particularly IL-1B, IL-6 and TNF-α, are thought to induce symptoms of fatigue via signaling of the central nervous system through varied somnogenic influence (Weschenfelder, Sander, Kluge, Kirkby, & Himmerich, 2012).

The nuclear factor NF-κB, pro-inflammatory transcription factor, for example, is activated by the cancerous tumor microenvironment (Aggarwal, 2004) and, thus, pretreatment CRF may be due to tumorigenesis (Bower & Lamkin, 2013). Fatigue often occurs also during treatment, particularly due to chemotherapy or radiation therapy; this effect has been associated with elevations in inflammatory markers secondary to the therapeutic intervention. For example, in one
study, changes in inflammatory markers, including C-reactive protein and IL1 receptor antagonist, were found to be associated with fatigue symptoms among certain individuals with breast and ovarian cancer (Bower et al., 2009). CRF has been found to occur years after completion of therapy in breast cancer survivors and alterations in proinflammatory markers also have been found among these individuals (Collado-Hidalgo et al., 2006; Orre et al., 2009).

Besides pro-inflammatory genes, other genomic factors are currently being studied to determine their impact on fatigue among cancer patients. For example, the relationship between dysfunction in certain mitochondrial genes has been found among prostate cancer patients receiving external beam radiation (Hsiao, Wang, Kaushal, & Saligan, 2013). Advances in genomic technologies will certainly change the face of understanding the molecular impact of genetics and CRF that will enhance predicting and managing the symptoms and improving outcomes.

18.2.1. Future Implications—Cancer Related Fatigue and Genomics

Although many studies have shown an association with varied inflammatory markers and CRF among patients with cancer, causality has not been established and gaps in knowledge continue, warranting further research in this area (Saligan & Kim, 2012). Specifically, problems exist regarding measurement of CRF, exact understanding of the underlying biology of the symptom, and clinical trials targeted towards CRF (Barsevick et al., 2013). However, future links between CRF and inflammatory markers may be a means to provide personalized/precision medicine as a prognostic biomarker for fatigue among cancer patients or genetic predictors of fatigue for therapeutic management (Collado-Hidalgo et al., 2006; Jim et al., 2012), as well as future development of effective treatments such as cytokine antagonists targeting CRF (Bower & Lammkin, 2013). Further, because fatigue is a complex symptom with phenotypic heterogeneity, the inclusion of biobehavioral research of fatigue may provide clarity and contribute to the understanding of CRF and to future development of genetic/genomic interventions (Lyon, McCain, Pickler, Munro, & Elswick, 2011). The international and interdisciplinary GeneQoL Consortium is one means to improve patient outcomes regarding issues that impact quality of life, including that of fatigue (GeneQol Consortium, 2015; Sprangers et al., 2009). This consortium was established to investigate genetic disposition of patient-reported quality-of-life outcomes in order to gain insight on the impact of disease and treatment on patient outcomes (GeneQol Consortium, 2015). Clinical implications of the consortium are based on obtaining genetic knowledge, including understanding biological pathways that may impact quality of life (GeneQol Consortium, 2015), and incorporating understanding of the biological and genetic mechanisms of CRF (Barsevick, Frost, Zwinderman, Hall, & Halyard, 2010).

18.3. GENOMICS AND PAIN

Pain is universal and has been described since antiquity, and yet the biochemical pathways and pathophysiologic underpinnings of pain are only now beginning to be unraveled. An excellent review of the history of pain and pain management can be found in the article by Meldrum (2003). Despite the lack of understanding and effective therapies to manage pain, helping patients and families cope with the manifestations of pain has been a central feature and core mission area for nurses since at least the 19th century, when Florence Nightingale discussed pain management in “Notes on Nursing” (Nightingale, 1860). Since then, many resources have been developed to improve nursing competency in pain management, including a pain management nursing certification awarded by the American Nurses Credentialing Center; establishment of the American Society for Pain Management Nursing (ASPMN) in 1991, which publishes a journal dedicated entirely to nursing management of pain; and nursing competencies focused on pain management (http://mbon.maryland.gov/Documents/pain_management.pdf).

Over 100 million Americans suffer from pain every year (Institute of Medicine [(U.S.] Committee on Advancing Pain Research, 2011), and a recent study estimates that chronic pain is more expensive than cancer, heart disease, and diabetes, costing up to $635 billion a year (i.e., up to $300 billion in direct costs and $334 billion
in lost productivity) (Gaskin & Richard, 2012). Pain, a very important signaling mechanism in animals, plays a significant role in survival, because it forces the animal to protect an injury until it heals. Pain becomes chronic when the noxious stimuli persists after healing is complete, evolving into pain without a purpose. The experience of pain is highly variable; some people who experience acute pain from a noxious agent will develop chronic pain whereas others, exposed to the same causative agent, will not (Mogil, 2012). The perception of pain is highly individualized and subjective as well, as indicated by pain rating scores used in research and clinical settings. Finally, there is marked individualized variability in response to analgesics, with some people responding to very small doses and others requiring much larger doses to feel an effect (Aubrun, Langeron, Quesnel, Coriat, & Riou, 2003). All of this variability raises questions about the possibility that genetic factors could influence the experience of pain. More than 350 candidate genes have been associated with variability in pain sensitivity, and twin studies have clarified the heritability of pain in several specific conditions; however, to date, there are still many unanswered questions related to the basic genetic underpinnings of pain (Smith & Muralidharan, 2012).

Several classification systems have been developed to guide pain assessment and management. Some of the most common categorization systems include stratifying pain as acute or chronic, based on the length of time it has been present, or by intensity (mild to moderate, or severe). Numeric pain scales were developed to attempt to capture pain intensity. Physiologic changes (nociceptive, neuropathic, and inflammatory) and manifestations based on the affected tissue types (skin, muscles, viscera, joints, tendons, and bones) have also been used to categorize pain. Some diseases have classic pain characteristics; therefore, pain has been clustered by syndrome (cancer, fibromyalgia, migraine, etc.) (University of Wisconsin, 2014). This chapter reviews just a few of the areas being explored in the genomics of pain.

A few rare single gene disorders are associated with alterations in pain sensation, such as paroxysmal pain or a complete inability to feel pain. Although at first glance the genes appear to involve seemingly unrelated functional protein classes, on closer inspection, almost all the pathways involve the SCN9A gene in one way or another (Mogil, 2012). SCN9A encodes for the alpha subunit of the NaV1.7 sodium channel, expressed primarily in peripheral sensory nerves that transmit pain, touch, and smell signals to the central nervous system (Mogil, 2012). The role that SCN9A plays in more common pain responses is less clear (Young, Lariviere, & Belfer, 2012). Some studies have shown that variations in SCN9A alter pain responses (e.g., individuals with a G allele on SCN9A report lower pain scores compared with individuals having the less common A allele); other studies have been unable to consistently replicate those findings (Starkweather & Pair, 2013).

Genome wide association studies (GWAS) are changing the landscape of genomic research. GWAS tools such as computerized databases containing the reference human genome sequence, a map of human genetic variation, and new analytic technologies that can cheaply, rapidly, and accurately analyze whole-genome are making it possible to locate the genes associated with common diseases, such as asthma, diabetes, and heart disease. Once a new gene has been located, new strategies to detect, prevent, and/or treat a particular disorder can be developed. Despite the rapid advances made in fields such as cardiology, oncology and hematology using GWAS, research into the genes associated with pain has lagged for several reasons. Reasons include the subjective nature of pain, relatively low funding levels, and associated lack of interest from researchers (Mogil, 2012). More recently, however, more research has been done to examine the genetic underpinnings of pain associated with diseases such as migraine headaches, osteoarthritis, endometriosis, Crohn’s disease, and temporomandibular disorder (TMD) (Young et al., 2012). Some of the genes found in these studies include a mutation in ZNF429 and a gene upstream of the RHBDF2 gene, whose function is currently unknown. Although no polymorphisms have been found in any of the known opioid receptor genes, ethnic differences appear to play an important role, because the strongest effect in one study was country of origin (Mogil, 2012). Despite the progress that has recently been made in understanding the genes associated with pain response, significant hurdles remain,
such as technology and data analysis limitations, explaining phenotypic heterogeneity, and the costs associated with conducting GWAS, which typically involve genotyping large numbers of people (Young et al., 2012).

18.3.1. Epigenetics and Pain

As scientific understanding of epigenetic processes has increased over the past decade, there has been a concurrent surge of research exploring epigenetic mechanisms involved in regulating the nervous system, particularly the epigenetic processes associated with memory and synaptic plasticity (Denk & McMahon, 2012). Recent studies have found that epigenetic control is particularly important in three distinct areas: peripheral inflammation, pain processing, and plasticity.

When the body is exposed to a physical, chemical, or biologic insult, an inflammatory response develops rapidly to remove or destroy the injurious material, setting the stage for tissue repair and healing. Inflammation is commonly associated with pain, redness, heat, and swelling, which have been shown to increase healing, either because the injured person protects that area or because inflammatory cells, such as macrophages, produce high levels of insulin-like growth factor-1 (IGF-1), which increases the rate of healing and muscle regeneration (Lu et al., 2011). The inflammatory response is highly complex, involving genes involved in a number of different processes, such as antimicrobial defense, immune response, tissue repair, and remodeling. Epigenetic changes in genes regulating macrophage function may play a particularly important role in inflammatory response, because they help macrophages change in response to different infectious organisms (Bayarsaihan, 2011). Epigenetic changes in T cells and monocytes, transcription factors found in several protein families (NF-κB, FOXP3, IRF, STAT), RE1silencing transcription factors (REST), and histones (i.e., histone H4 hyperacyetylation) have all been shown to regulate inflammatory response (Bayarsaihan, 2011; Selvi, Mohankrishna, Ostwal, & Kundu, 2010).

Inflammation persisting beyond the normal healing period is considered “chronic inflammation” characterized by chronic infiltration of mononuclear immune cells and low antioxidant and high free radicals levels, creating an environment in which tissue healing is occurring at the same time tissue is being damaged, become a self-perpetuating cycle of injury, repair and usually, pain (Khansari, Shakiba, & Mahmoudi, 2009). Identifying the epigenetic mechanisms associated with the development of chronic pain may open the door to much needed advances in pain management (Denk & McMahon, 2012; Mogil, 2012). Epigenetic regulation of tissues in the nervous system is of particular interest, because these are the cells that generate and transmit pain signals, but also because the regeneration rate of individual neurons in the nervous system is very slow. The same neuron is likely to survive for decades, and because DNA is very resistant to change, epigenetic adjustments that occur over the life of the cell may be critical as they continually adapt to environmental stressors (Seo et al., 2013). A neuron’s use of epigenetics to adapt to the environment is particularly important because such changes are reversible; therefore, if pain develops because of an epigenetic change, a drug that chemically “resets” the neuron to its normal state might be a powerful therapeutic tool (Seo et al., 2013). Although there is evidence from animal studies to demonstrate that it is possible to modify epigenetic mechanisms with drugs (Geranton, 2012), more research needs to be done before human studies can begin to ensure that the drugs do not alter epigenetic mechanisms in other tissues (Crow, Denk, & McMahon, 2013).

Reinforcing the idea that epigenetics plays an important role in the development and perception of pain, data from genomic studies examining pain response is often contradictory. For example, ORPM1, a common m-opioid receptor variant, has been shown to increase endorphin binding and activation of g-proteins in some studies, but this effect is not found in all studies on a consistent basis. Similarly, in some studies, individuals with COMT variations were found to have greater sensitivity to pain, but the same association has not been seen in other studies (Bond et al., 1998; Kim et al., 2004; Zubieta et al., 2003). These inconsistencies suggest that factors, such as epigenetics, may play an important role in pain phenotypes (Seo et al., 2013).

Opioids are used to treat pain on a routine ba-
sis, and many opioids are now approved for use, each of which has different efficacy and adverse response profiles based on the individual. If an individual has a poor response to one opioid, another is usually tried in a trial and error fashion until the most effective drug is found. Because this random approach exposes individuals to adverse effects and decreases quality of life, as the search for an effective analgesic agent continues, there has been considerable interest in finding the genetic factors that explain the variability in response to opioids (Branford, Droney, & Ross, 2012).

Several studies have found an association between the A118G SNP in OPRM1 and opioid dosing (Chou et al., 2006a; Chou et al., 2006b; Reyes-Gibby et al., 2007), but similar to the issues with OPRM1 mentioned above, a meta-analysis of genetic association studies concluded that the A118G SNP is inconsistently associated with pain-related phenotypes (Walter & Lotsch, 2009). It is becoming clear that the genes associated with pain relief are not the same genes that influence the development of adverse effects, highlighting the need to carefully choose and define the phenotype being studied. It is also very likely that interactions among multiple genetic and environmental factors are playing important roles in the phenotype (Branford et al., 2012).

Acute pain transforms into chronic pain in a complex series of discrete pathophysiologic and histopathologic steps involving more than 2000 gene changes in over 400 candidate genes. Broadly, the process involves neurons that abandon the normal “modulated” response to pain (reversible activation of intracellular signal-transduction cascades) and adopt a more persistent “modified” response involving relatively permanent changes to neuron activation (Voscopoulos & Lema, 2010). A growing body of evidence suggests that nociceptor modifications can occur in response to psychological triggers, further complicating research efforts (Diatchenko, Fillingim, Smith, & Maixner, 2013).

Understanding the genomics of individual variability in pain sensitivity, analgesic response, adverse reactions, and triggers that transform acute to chronic pain is still in its infancy. Once the genomic roadmap has been created, the highly complex interactions between the environment and the human genes that regulate the pain response can then be explored, leading to a more effective and safe personalized approach to pain management.

18.4. NURSING ROLE AND SYMPTOMATOLOGY

Symptom management applies to nurses prepared at every level and practicing in virtually every setting—from nurses providing direct care to patients in inpatient and outpatient settings to conducting genomic research and to nursing faculty and nurses leading the largest health care systems. Nurses working at the point of care should be familiar with the emerging genetic information that helps support decisions that can improve the care of an individual patient, the goal of precision and personalized care. Nurses in faculty roles are responsible for ensuring that students entering nursing are well informed about genetics and are prepared to use emerging genomic information to improve patient outcomes. Nurse researchers might want to focus their scientific efforts on exploring the biological and behavioral aspects of symptoms such as pain and fatigue, with the goal of developing new knowledge and new strategies for improving patient health and quality of life (National Institute of Nursing Research, nd). Nurse administrators play a critical role, because they serve in key leadership roles as systems begin to integrate genomic discoveries into clinical settings in a meaningful way. Their support can accelerate nurses’ use of genomic information as it continues to emerge from large population based studies.

18.5. REFERENCES

Aubrun, F., Langeron, O., Quesnel, C., Coriat, P., &...
Index

1000 Genomes Project, 240
21-hydroxylase deficiency (21-OH), 127
5-azacytidine, 259
AAT deficiency (AATD), 190, 191
AAT inhalation therapy, 191
ABO blood types, 19, 20
achondroplasia, 57, 155, 161
Acquired Bone Marrow Failure Syndromes (ABMFS), 255, 279
acrocentric, 3, 9
acute lymphocytic leukemia (ALL), 281, 282
acute myeloid leukemia (AML), 281
acute promyelocytic leukemia (APL), 281, 282
A Disintegrin And Metalloproteinase with Thrombospondin Motifs (ADAMTS13), 270
adenine, 2, 10, 12, 261, 294, 301
adenocarcinoma, 201–203, 368, 369, 381, 382, 385
ADCY9, 196
adolescent cataracts, 299
adrenal gland, 127
adrenocorticotropic hormone (ACTH), 127
Agency for Healthcare Research and Quality (AHRQ), 413
allergens, 196–198
alpha thalassemia (α-thal), 27, 258
Alpha-1 antitrypsin (AAT), 189, 190
alpha globin (α-globin), 256–258
Alport syndrome, 303, 305
Alstrom syndrome, 305
alternative splice sites, 13
Alzheimer’s disease, 26, 94, 96, 179, 183, 184
ambiguous, 53, 128, 144, 239, 241, 328
American Academy of Family Physicians (AAFP), 125, 168
American Congress of Obstetrics and Gynecologists (ACOG), 125
American Nurses Credentialing Center (ANCC), 73, 414, 425
American Organization of Nurse Executives (AONE), 413
American Society for Pain Management Nursing (ASPMN), 425
amino acid, 10–13, 15–18, 142, 192, 198, 217, 219, 256–258, 290, 292, 301
Amsterdam criteria (I and II) and colon cancer, 380
amyotrophic lateral sclerosis (ALS), 289, 312, 313, 316
analgescic response, 428
anaphase, 4, 6, 350
ancestry of origin, 31, 42, 48–50, 371
anencephaly, 26, 126
aneuploidy, 68, 130, 136, 360, 369
Angelman syndrome (AS), 24, 125, 131
anorexia nervosa, 127
antenatal steroids, 195
anticipation, 25, 31, 56, 57, 78
antiphospholipid antibody syndrome (APS), 276
antisense strand, 10–12, 15–18
antithrombin deficiency, 275, 277
aplastic anemia, 268, 279
applied behavioral analysis (ABA), 166, 168
ASD-related syndromes, 167
Ashkenazi Jewish Ancestry, 366, 371, 372, 375
Asian, 18, 48, 75, 110, 114, 133, 200, 203, 210, 212, 215, 220, 221, 243, 260, 374, 384
assisted reproductive technologies (ART), 71, 131
assortative mating, 21
asthma, 22, 24, 189, 190, 191, 196–200, 335, 426
astrocytoma, 299, 364
atherosclerosis/arteriosclerosis, 40, 209, 211, 214, 216, 223–226, 230, 242, 253
atopic dermatitis, 196, 335
attention-deficit/hyperactivity disorder (AD/HD), 164
atypical HUS (aHUS), 270
autism, 27, 44, 68, 125, 127, 164–166, 167, 169, 295, 296
autism spectrum disorders (ASD), 68, 164, 166, 173
autism-specific screening, 165
Autoimmune Polyendocrine Syndrome Type 1, APS, 1, 328
Autoimmune Polyendocrine Syndrome Type 2, APS, 2, 328
Autoimmune Polyendocrine Syndrome Type 3, APS, 3, 328
autoimmune regulator (AIRE), 328
autonomy, 85–94, 172, 185, 388, 394
autosome, 2, 8, 19
base pairs, 211, 215, 243, 358, 359, 392
basophils, 255, 264, 284
Bacterial Inhibition Assay (BIA), 141, 142, 291
Baye’s Theorem, 73
BCR/ABL translocation (Philadelphia chromosome), 353
Beckwith-Wiedemann syndrome, 131, 158, 161, 162
Bernard-Soulier Syndrome (BSS), 272
beta thalassemia (β-thal), 143, 256, 258
beta globin (β-globin), 17, 70, 256–259
Bethesda guidelines, 380–383
biallelic, 125, 279, 363
biobanks, 414
bioinformatic programs, 240, 249
biological treatments, 424
Birt-Hogg-Dube Syndrome (BHDS), 204
bone marrow failure syndrome, 255, 268, 277, 279, 280
BRAF V600E mutation and colon cancer, 102, 201, 354, 383, 391
brain tumors, 199298
Branchio-Oto-Renal syndrome (BOR), 305
bronchi, 203, 361
Brugada Syndrome, 225, 244, 245
Burkitt lymphoma, 285
café au lait spots, 20, 152, 297–299, 364
Canavan disease, 21
Cancer Genomics, 345–407
BRCA genes (see Cancer Genomics—Hereditary Breast and Ovarian Cancer)
cancer, multistage genetic and genomic process, 358–360
cancer stem cells, 349, 350
cancer types and causes, 360–361
carcinogens (examples of), 360–361
carcinogenesis primer, 15, 345, 348–353, 355, 356, 358, 366, 378
caretaker genes, 355
characteristics of cancer cells, 353, 360
chromosomal instability pathway, 358–360
clonal cell evolution theory, 349
genetic testing, 374
identification of Risk Elements and Red next generation sequencing (NGS), 389–390
Other Data Collection Resources, 372
primary prevention, 376–377
RAPID approach to assessment, 394–397
risk probability, 372–374
Risk Probability Models (i.e. BRCAPRO, BOADICEA), 372–374
Secondary Prevention and enhanced Surveillance, 377
Hereditary Colon Cancer Syndromes, 363, 378–388
Lynch Syndrome, 363, 378–385
 introduction 378
 differential diagnoses and Lynch Syndrome, 385
 management, 384
 phenotype and characteristics (Colon), 378–379
 phenotype and characteristics (Extracolonic [e.g. endometrial; ovarian]), 379–380
 Risk Assessment and Identifying individuals
 suspect for Lynch, 380
 variants of Lynch Syndrome (Muir-Torre and Turcot), 380
polyposis syndromes, 378, 385
 Familial Adenomatous Polyposis (FAP) and Attenuated FAP, 385–386
Gardner’s syndrome, 386
Turcot syndrome, 380, 386
 MUTYH-associated polyposis (MAP), 363, 386
 Other Hereditary Colon Cancer Syndromes not associated with adenomatous, 386–388
 Peutz-Jeghers (e.g. hamartomatous polyps), 378, 386, 388
 juvenile polyposis, (e.g. juvenile polyps) 363, 378, 387
 immunohistochemical (IHC) staining, 379
 Knudson’s two-hit hypothesis 354–355, 366
KRAS mutations, 392
 loss-of-function, 112, 113, 328
 loss of heterozygosity, 354
 loss of homozygosity, 354
 microRNA, 345, 358, 359, 392
 microsatellites, 357, 379
 microsatellite instability, 379
 mismatched repair genes (MMR), 360, 378, 379, 380, 383
molecular genomic make-up, 347
Muir-Torre Syndrome (See variants of Lynch Syndrome)
 MUTYH-associated polyposis (See polyposis syndromes)
next generation sequencing (NGS), 389, 390
 online/web-based resources, 396
ovarian cancer, 379–380
p53 Tumor Suppressor gene, 350, 354–356, 359, 362, 364
personalized care, 347, 349, 360, 376, 389, 390, 392
pharmacogenomics and cancer, also refer to Chapter 5 (S-Fluorouracil; Irinotecan; Mercaptopurine), 103–108
irinotecan, 393
Tamoxifen, 392–393
Thiopurines, 393
precision medicine, 348, 349, 360, 389, 390
 Precision Medicine Initiative, 348
proto-oncogenes, oncoproteins and carcinogenesis, 346, 352–353
RAPID Approach and Cancer Genomics, 369–376; Utilization of RAPID for breast cancer, 394–395; (See also Chapter 2
retinoblastoma, 354
Risk Assessment and Cancer Genomics 369–376
 Data Collection (Personal and Family History and Physical Examination), 370–372
 Risk Identification and Risk Elements, 372
 Risk Probability, 372–374
 Risk Communication/Counseling and Risk Management, 375–376
 sex cord tumors with annular tubules (SCTAT), 386
somatic mutation, 351, 354, 362, 366
sporadic cancer, 346, 351, 354, 356, 362, 369
statistical trend data incidence and mortality, 346–347
 stem cell theory, 349
 tumor suppressor genes, 352, 353–356
tumor markers and breast cancer (Example of), 391–392
tumor markers and colon cancer (Example of), 392
Turcot Syndrome (See variants of Lynch Syndrome) cancer, multistage genetic and genomic process, 358–360
cancer related fatigue (CRF), 423, 425
cancer stem cells, 349, 350
cancer types and causes, 360–361
candidate genes, 426
cardiac channelopathies, 244–245
cardiovascular pharmacogenomics, 109
carcinogenesis primer, 348–351
caretaker genes, 355
catch-down growth, 155
catch-up growth, 155
catecholaminergic polymorphic ventricular tachycardia (CPVT), 244–245
celiac disease, 129, 153, 157, 330, 331, 335, 336
cell cycle, 4, 5, 22, 181, 277, 278, 345–360, 364, 366
cell free fetal (cff) DNA testing, 136
cell membrane disorders, 255, 259
Caring for Disease Control and Prevention (CDC), 28, 35, 63, 73, 141, 150
central dogma, 12
centrioles, 4, 7
centromere, 2–6, 9, 10
CF transmembrane conductance regulator (CFTR), 102, 130, 135, 192, 193, 203
CF-related diabetes (CFRD), 192
characteristics of cancer cells, 360
Chediak-Higashi syndrome (CHS), 265, 272
 CHEK2, 200, 389
chemokines, 197
chemotherapy, 104, 106, 114, 203, 262, 267, 278, 282, 300, 391, 392, 424
childhood bronchiectasis, 194
childhood leukemia, 126
chloride channels, 192
curea, 57, 301–303
chorionic villus sampling [CVS], 136, 150
Chromatid, 4–7, 350
chromosomal instability pathway, 358–360
chromosomal microarray, 68
chronic bronchitis, 191
chronic inflammation, 257, 427
chronic lymphocytic leukemia (CLL), 269, 281, 283
chromosome microarray, 149
chronic bronchitis, 191
chronic lymphocytic leukemia (CLL), 269, 281, 283
chronic myeloid leukemia (CML), 281, 282
chronic obstructive pulmonary disease (COPD), 189
chronic pain, 257, 299, 309, 425–428
chronic sinus infection, 130, 194
Chuvash polycythemia (CP), 262
cri du chat, 153
cryptorchidism, 127, 152
cultural background, 42, 74
cystic fibrosis, 13, 21, 25, 40, 71, 91, 96, 124, 130, 132, 135, 143, 146, 157, 189, 190–193, 197, 413
Cystic Fibrosis (CF), 13, 21, 25, 40, 71, 91, 96, 124, 130, 132, 135, 143, 146, 157, 189, 190–193, 197, 413
CF Foundation, 190
cytochromes, 6, 68, 282, 284
cytokines, 134, 197, 261, 266, 339, 350, 358, 424.
cytotoxic chemotherapy, 424
Data Collection (Personal and Family History and Physical Examination), 370–372
de novo and cancer genomics, 363–365, 385
Circardian Locomotor Output Cycles Kaput genes, CLOCK genes, 336, 337
cleft lip and palate, 25, 153
client focused counseling, 67, 74
Clinical Pharmacology and Therapeutics Implementation Consortium, 105
clinical practice knowledge, 413–414
ClinSeq Project, 418–420
clonal cell evolution theory, 349
C-myc oncogene, 285
cogulopathies, 255, 274–275
codominant, 19, 108, 190
codon, 10–13, 17, 18, 258, 301
cognition, 19, 35, 52, 59, 128, 150, 164–166, 259, 262, 347, 371, 384
common complex diseases, 32, 41, 181, 209
communication disorders, 166, 317
communication patterns, 75
compound heterozygous, 104
Comprehensive Cancer Network (CCN), 38, 199, 282, 284, 348, 396, 423
comprehensive health history, 411
congenital Adrenal Hyperplasia (CAH), 127, 135, 142, 159, 327, 328, 330
congenital amegakaryocytic thrombocytopenia (CAMT), 268, 279
congenital dyserythropoietic anemias (CDA), 278
congenital heart defects, 52, 129, 141, 153
congenital heart disease, 26, 142, 152, 155, 243
congenital hypertrophy of the retinal pigment epithelium (CHRPE), 385–386
congenital hypothyroidism, 142
connective tissue disorders, 242–243
consanguinity, 21, 31, 32, 42, 45, 49, 150, 266, 267, 277, 380
consent, 44, 69–71, 75, 77, 87, 92, 94, 136, 141, 144–146, 170, 204, 382, 388, 390, 392, 412
consequentialism, 86
constitutional growth delay, 157
consultant, 48, 54
cosmoal growth path, 358–360
context, 52, 74, 75, 79, 85–88, 93, 95, 107, 124, 155, 157, 184, 185, 212, 215, 217, 223, 231, 412, 417, 418, 420
Coordinating Center of the Newborn Screening Translational Research Network (NBSTRN), 145
copy number variant (CNV), 68 127, 167, 203, 242
Cornelia DeLange syndrome (CdLS), 155
Coronary Artery Disease (CAD), 40, 209–212, 225, 226, 239
CpG islands, 23, 420
criopharyngioma, 157
cup du chat, 153
crossing over, 5, 6, 10
cryopreservation, 131
cryptorchidism, 127, 152
cultural background, 42, 74
Cushing disease, 157
cyclo-oxygenase 1 (COX1), 271
CYP1A1, 126
CYP2C19, 101, 111–113, 116
CYP2C9, 101, 109–111, 116, 225
CYP3A5, 196
CYP3A7, 196
Cystic Fibrosis (CF), 13, 21, 25, 40, 71, 91, 96, 124, 130, 132, 135, 143, 146, 157, 189, 190–193, 197, 413
CF Foundation, 190
cytogenetics, 6, 68, 282, 284
cytokines, 134, 197, 261, 266, 339, 350, 358, 424.
cytosine, 2, 10, 23, 30, 420
CYP3A5, 196
CYP3A7, 196
Cystic Fibrosis (CF), 13, 21, 25, 40, 71, 91, 96, 124, 130, 132, 135, 143, 146, 157, 189, 190–193, 197, 413
CF Foundation, 190
cytochromes, 6, 68, 282, 284
cytokines, 134, 197, 261, 266, 339, 350, 358, 424.
cytosine, 2, 10, 23, 30, 420
CYP3A5, 196
CYP3A7, 196
Cystic Fibrosis (CF), 13, 21, 25, 40, 71, 91, 96, 124, 130, 132, 135, 143, 146, 157, 189, 190–193, 197, 413
CF Foundation, 190
cytochromes, 6, 68, 282, 284
cytokines, 134, 197, 261, 266, 339, 350, 358, 424.
cytosine, 2, 10, 23, 30, 420
CYP3A5, 196
CYP3A7, 196
de novo (new) mutation, 19, 20, 23, 32, 56–58, 162, 167, 180, 243, 297, 298
decision-making, 33, 35, 37, 58, 85–90, 92, 93, 94, 144, 185, 240, 306, 360, 376, 388, 391, 394, 414, 419
decitabine, 259
Definition of Common Terms used in Cancer Genetics, 345–346
deletion syndrome (congenital cardiac anomaly), 243
dendritic cells, 255, 266, 277
deontologic, 86
deoxyribonucleic Acid (DNA), 1, 167
depression, 44, 78, 111, 127, 134, 180, 268, 296, 302, 303, 312, 393, 414, 423
Desmoid tumors, 385
desmopressin (DDA VP), 271
development, 1, 20, 28, 52, 53, 90, 103, 125, 130, 144, 150, 153, 165, 166, 172, 196, 198, 214, 219, 250, 291, 292, 296, 304, 305, 313, 315, 331, 348, 360
developmental delays, 149, 150, 152, 165, 198, 296
developmental domains, 165
developmental milestones, 164, 291
developmental surveillance, 165
dextrocardia, 194
diabetes, 5
Diamond-Blackfan anemia (DBA), 279
differential diagnoses and Lynch Syndrome, 385
Disseminated Intravascular Coagulation (DIC), 268
dihydropyrimidine dehydrogenase gene (DPD) and DPD deficiency, 104, 105
dihydropyrimidine dehydrogenase gene (DPYD), 104
diplomene, 5
Direct To Consumer (DTC), 72, 227
direct to consumer testing, 72, 393
DNA methylation (hypermethylation), 23, 127, 181, 356, 392, 420, 421
DNA repair genes, 356
DNA sequence analysis, 70, 72
DNA sequencing technologies, 143
Down syndrome (DS), 9, 153, 159, 161, 280
dried blood spots, 141–146
drug-induced thrombocytopenia, 269
Duchenne Muscular Dystrophy, 22, 45, 242
duplications, 10, 68, 128, 168, 298, 304
Dyskeratosis Congenita (DC), 265, 277, 278
dyslipidemias, 214
dysmorphology, 32, 52, 53, 149, 150, 166
eyritis, 136, 165, 172, 306
eyon PARKINSON disease, 310
East Asian, 133, 221, 260
eclampsia, 130–134, 219
Evaluation of Genomic Application in Practice (EGAPP), 79, 106, 211, 227, 229, 383, 384, 412
Ehlers-Danlos Syndrome (EDS), 243
electronic medical records (EMRs), 34, 169, 414
emphysema, 57, 189–191, 193
Empirc Risk Models for Breast Cancer (Gail and Claus), 34, 58, 374
endometrial cancer, 45, 371–373, 379, 381, 383, 384, 395, 396
environmental influences, 132, 191, 228, 239, 307, 327, 333, 335, 412, 413
eosinophils, 255, 264
ependymomas, 298, 299, 364
epidermal growth factor receptor (EGFR), 41, 203, 369
epigenetics, 13, 23, 125, 126, 135, 168, 181, 242, 332, 333, 345, 348, 356, 357, 421
epigenomics, 417, 419–421
epilepsy, 25, 126
epithelial cell adhesion molecule gene (EpCAM), 363, 378, 380, 383, 384, 389
epithelial cells, 197, 335
erythrocytosis, 261, 262
erythropoietin receptor (EPOR) gene, 261, 262
essential hypertension, 209, 210, 218–223
essential thrombocytosis, 271, 272, 283
Ethical Legal and Social Implications (ELSI), 85, 89, 183, 348, 388, 394
ethical, legal and social implications of single gene testing for hereditary colon cancer syndromes, 388–389, 391, 392 (biomarkers)
Ethical Standards, 85, 88, 90
ethics, 85–91, 96, 135, 183, 185, 412
ethnic background, 52, 54, 74, 301, 313
Eunice Kennedy Shriver National Institute of Child Health and Human Development, 135, 144, 296
evaluation of Genomic Application in Practice and Prevention (EGAPP) and Lynch Syndrome, 383–384
evidence-based practice, 116, 184, 185
excess growth, 157
exome sequencing, 33, 36, 70, 144, 240, 241, 390, 417, 418
exons, 12, 70, 190, 374, 390
expansion mutation, 18, 25
experience of pain, 426
experiential background, 74, 75
extreme longevity, 181
F508del mutation, 192
Factor XI deficiency, 274
faculty, 100, 185, 409–413, 428
false positive rates, 127
Familial Adenomatous Polyposis (FAP) and Attenuated FAP, 348, 356, 363, 364, 378, 381, 386
familial Amyotrophic Lateral Sclerosis (ALS), 314
familial cancer, 345, 351, 397
familial dilated cardiomyopathy, 242
familial hypercholesterolemia, 44, 241, 247, 249, 250
familial Parkinson disease, 311
familial short stature, 155, 159
family health history (FHH), 32, 37, 38, 45, 62, 90, 123, 124, 129, 183, 184, 203, 262, 334, 410, 411
family relationships, 45, 46, 67, 75, 77
Fanconi anemia (FA), 159, 277, 356, 366
features of genetic syndromes, 151–153, 172
fecundity, 127
Federal Trade Commission, 73
financial management, 413
FLCN, 204, 205, 364
Florence Nightingale, 425
flourescent in situ hybridization (FISH), 68
folic acid, 26, 126, 127, 260
folic acid supplementation, 26, 126, 127, 260
follicular lymphoma, 285
Foundation for Sickle Cell Disease Research (FSCDR), 413
foundational thinking skills, 414
fragile X premature ovarian insufficiency (FXPOI), 128, 296
fragile X syndrome (FXS), 18, 25, 45, 173, 295, 296
fragile X-associated tremor, ataxia syndrome (FX-TAS), 296, 426
frailty, 179, 180
frameshift mutation, 17, 18, 297
Friedreich's Ataxia (FRDA), 293–294
frontotemporal dementia, 179
full mutations, 128
functional change, 18, 256, 360
future advances and technologies and genomics of cancer, 389–393
FVL, 275, 276
gain of function, 18, 245, 248, 263, 275, 328, 352, 353
galactosemia, 142, 143
gamma globin, 256
Gardner’s syndrome, 386
gatekeeper genes, 355
Gaucher, 21, 169, 267, 268
gene therapy, 89, 191, 258, 259, 269, 312
GeneQol Consortium, 425
Genes associated with MS, 308–309
genes in common pathways, 167
genetic alliance, 78, 79, 96, 144, 240, 241
genetic discrimination, 67, 240
genetic/genomic competencies, 85, 124
Genetic Information Nondiscrimination Act (GINA), 67, 94, 190, 240
genetic mutations, 198, 244, 270, 272, 283, 293, 296, 298, 304, 307, 311, 331, 339, 349, 351, 352, 358, 360, 364
 genetic mutations and Cancer Development, 351
genetic polymorphisms, 109, 110, 196, 424
genetic predisposition, 54, 195, 199, 218, 242, 334
genetic red flags, 415
 genetic risk assessment, 73
 genetic screening, 37, 38, 42, 71, 124, 136, 240, 247
 Genetics Interdisciplinary Faculty Training (GIFT), 410
Genetics Program for Nursing Faculty (GPNF), 410
gene sequencing, 33, 70, 80, 87, 96, 115, 116, 143, 229, 241, 249, 389, 391, 414, 417, 418, 421
Genome Wide Association Studies (GWAS), 27, 191, 197, 210, 211, 309, 391, 426
genomic imprinting, 24, 125, 331
genomic literacy, 411
Genomic Nursing State of the Science Advisory Panel, 412
genomic risk assessment, 34, 149, 411
genomic variants, 423
germline mosaicism, 20, 23
germline mutation, 20, 199, 204, 278, 378, 380
gestational diabetes mellitus (GDM), 131
GH excess, 158
Gilbert’s syndrome, 106
Glanzmann’s Thrombasthenia (GT), 272
glucose-6-phosphate Dehydrogenase Deficiency (G6PD), 261
glucuronidated SN-38, 105, 106
glutathione S-transferase M1 (GSTM1), 200
Glutathione S-transferase T1 (GSTT1), 200
GPC5, 200
GPIIb/IIIa receptor, 271
Grave’s Disease (GD), 159, 327, 330
Gray platelet syndrome, 272
growth charts, 155, 157
growth curves, 155
growth factors, 197, 280, 352
growth hormone deficiency, 153, 157
growth potential, 155
growth retardation, 157
guanine, 2, 10, 12, 23, 107, 294, 301, 313, 393, 420
Guthrie card, 141
Hardy Weinberg calculation, 73
Hashimoto’s thyroiditis, 159, 327, 330412
Hereditary Breast and Ovarian Cancer (HBOC), 19, 41, 54, 56, 57, 70, 362, 365–367, 371, 372
HDAC inhibitors, 259
health care economics, 413
health care transition, 168, 170, 171, 173
Health Insurance and Portability Accountability Act (HIPAA), 48, 49, 67, 92, 95, 372, 388, 414
health outcomes, 28, 57, 60, 125, 132, 145, 196, 227, 340, 392, 413, 423
health promotion and disease prevention, 57, 412
hematologic neoplasms, 255, 280, 283
hemoglobin (Hb), 16, 17, 132, 135, 143, 255–267, 332
Hemoglobin Bart’s Hydrops Fetalis, 258
hemoglobin C (HbC), 256
hemoglobin E (HbE), 256
hemoglobin H disease, 258
hemoglobin S (HbS), 256
hemoglobinopathies, 134, 143, 255–260, 278
hemolytic anemia, 18, 255–261, 270, 278, 280
hemophagocytic lymphohistiocytosis (HLH), 267
hemophilia, 22, 134, 255–261, 270, 278, 280
hemophilia A, 273, 274
hemophilia B (Christmas disease), 274
hepatitis B, 52, 195, 361
hepcidin, 263, 264
HER2 protein, 114
Hereditary Breast and Ovarian Cancer syndromes (HBOC) (BRCA gene mutations), 19, 41, 70, 76, 77, 348, 366, 372, 375, 376
Hereditary Breast Cancer Syndromes (including HBOC and other syndromes), 41, 60, 365, 372, 375, 376
Hereditary Colon Cancer Syndromes, 378, 380, 383, 385, 388
Hereditary elliptocytosis (HE), 260
Hereditary Hemochromatosis (HH), 50, 263
hereditary persistence of fetal hemoglobin (HPFH), 256
hereditary spherocytosis (HS), 260, 278
heritability, 27, 72, 167, 178, 196, 210, 212, 213, 215, 218, 331, 334, 426
heritability of aging, 178
Hermansky-Pudlak syndrome (HPS), 265, 272
heterogeneity, 19, 53, 70, 209, 221, 229, 249, 260, 272, 349, 389, 390, 392, 425, 427
heterotaxy, 194
HFE, 48, 50, 51, 55, 62, 263
Hispanic, 26, 42, 48, 75, 91, 126, 191, 195, 210, 243, 247, 366
histiocytes, 255, 266
histone inhibitor, 127
histone modification, 13, 181, 420
HLA-A class I major histocompatibility genes, 203
Hodgkin, 52, 285
Homozygous, 13, 35, 104–109, 217, 224, 249, 257, 262, 263, 266, 275, 276, 283, 329, 366
horizontal transmission, 32, 50
HSC transplantation, 258, 259, 262, 282
Human Immunodeficiency Virus (HIV), 18, 99, 113, 141, 268, 361
Human Leukocyte Antigen (HLA), 114, 258, 308, 309, 329
HLA-B*5701, 113, 114, 308
human resource management. 413, 414
Huntington disease (HD), 18, 40, 77, 179, 289, 300–302, 418
Huntington Disease Society of America, 302
hypergonadotropic hypogonadism, 130
hyperimmunoglobulin E syndrome, 266
hypermethylation, 128
hypersensitivity reaction, 113
hypertrophic cardiomyopathy, 225, 242, 245, 247, 250, 294
hyperviscosity, 262
hypothyroidism, 129, 142, 157
hypoxia-inducible factor-alpha (HIF1-α), 262
Identification of Risk Elements and Red next generation sequencing (NGS), 389–390
immune Dysregulation Polyendocrinopathy, Enteropathy, X-linked Syndrome, IPEX Syndrome, 329
immune-mediated asthma, 197
immunohistochemical (IHC) staining, 379
importin-beta, 196
imprinting, 24,125, 131, 135, 331
incidental findings, 69, 70, 71, 77, 87, 89, 144, 146, 418
infectious disease, 102, 113, 194, 195
infertility, 10, 40, 42, 44, 46, 54, 68, 27, 129–131, 134, 162, 163, 192, 296
inflammation, 189, 197, 214, 307, 314, 332, 335, 336, 427
inflammatory bowel disease, 72, 159, 380
inflammatory mediators, 197
inflammatory response, 427
information technology, 412, 4114
informed consent, 44, 69–71, 75, 76, 87, 92, 94, 136, 144, 204, 388, 390, 396, 412
inherited bleeding disorders, 134
Inherited Bone Marrow Failure Syndromes (IBMFS), 277
innate immunity, 197, 200, 264
innovation, 95, 96, 424
insertion, 17, 18, 27, 202, 204, 220, 226, 259, 280, 282, 294, 304, 311, 378, 391
insulin-like growth factor-1 (IGF-1), 427
intellectual developmental disorders, 166
intellectual disability (ID), 53, 128, 153, 167, 198, 291, 295, 296
interactome, 35
interleukin (IL), 197, 275, 308, 309, 424
International Standard Cytogenomic Consortium, 69
Interphase, 5, 6, 283
interpretation of sequence analysis, 70
intracytoplasmic sperm injection (ICSI), 131, 163
intramural training, 413
intravenous human plasma-derived augmentation therapy, 191
Introns, 12, 14, 70, 417
IPO13, 196
IQ, 130, 163, 165158, 160, 161, 163, 164
irinotecan, 99, 101, 105, 106, 107, 393
Irish, 18, 133
iron overload disorders, 264
JAK/STAT pathway, 262
JAK1/JAK2, 284
Japanese, 205
Jervall and Lange-Nielson, T13.2, 305
Job syndrome, 266
justice, 85–91, 388, 391
juvenile HD, 302
Juvenile deafness, 54
juvenile idiopathic arthritis, 159
juvenile polyposis, (e.g. juvenile polyps), 363, 378, 387
karyotype, 24, 32, 46, 68, 157–160, 163, 282, 283
KRAS mutations, 202, 203, 392
Klinefelter syndrome, 266
Knudson’s two-hit hypothesis 354
KRAS, 61, 102, 199, 202, 203, 392
Langerhans cell histiocytosis (LCH), 267
large-cell lung cancer, 203
Le Fraumini, 199
leadership, 34, 89, 182–184, 327, 409, 412, 413, 414, 428
learning disabilities, 20, 44, 54, 125, 128–130, 152, 154, 164, 166, 295 296, 298, 331
leprosy, 195
leptokene, 5
Leukocyte adhesion deficiency (LAD), 266
Lisch nodules, 154, 298, 364
literacy, 44, 74, 80, 92, 96, 185, 411
liver disease, 191, 274
locus, 19, 70, 209, 211, 212, 230, 245, 362
Loeys-Dietz Syndrome (LDS), 243
Long QT Syndrome (LQTS), 215, 225, 244
long-term storage, 145
loss of function, 18, 24, 103, 112, 113, 245, 248, 271, 275, 299, 328, 353, 354, 355
loss of heterozygosity, 354
loss of homozygosity, 354
lymphocytes, 68, 255, 264, 267, 275, 283, 284, 329, 379, 381
lymphomas, 284, 285
Lynch Syndrome, 363, 378–385
Lysosomal Storage Disorders, 267
Manager Inventory Tool, 413, 415
mannose-binding lectin 2 (MBL2), 192
mantle cell lymphoma, 285
March of Dimes, 38, 96, 142
Marfan Syndrome (MFS), 155, 158, 161–165, 223, 224, 243, 328
massive parallel sequencing, 70
maternal copy, 1257
maternal phenylketonuria, 133
May-Hegglin anomaly, 268
Medicaid, 38, 172, 41
Medicare, 38, 172, 414
meiosis, 1, 5–7, 10, 22, 24, 25, 295, meiosis II, 6
MELAS, 25, 33, 305
Mendelian inheritance, 19, 32, 48, 56, 61, 182, 184, 239, 337, 366, 417, 420
meningioma, 298, 300, 361
menopause, 68, 126, 296
mental health disorders, 127
messenger RNA (mRNA), 10, 358, 418
metabolic disorders, 21, 24, 126, 150, 264, 267
metabolomics, 99, 209, 215, 217, 222, 223, 229
metacentric, 3,
metaphase, 4–6 68, 284, 350, 358
microbiome, 72, 334
microfluidic chip, 143
microRNA, 14, 250, 311, 333, 345, 358, 359, 419, 420
microsatellites, 357, 379
microsatellite instability, 358, 379
mid-parental height, 157, 160
miscarriage, 40, 42, 44, 129
missense mutation, 16, 19, 219, 220, 304, 311
mitochondrial disease, 126
mitochondrial DNA (mtDNA), 1, 26, 3050
mitochondrial encephalomyeopathy, lactic acidosis and stroke-like episodes (MEILAS), 305
mitochondrial inheritance, 25, 27
mitosis, 1, 4–6, 350, 360
mode of inheritance, 161, 414
modifier genes, 25, 192, 197,
molecular genetics, 282, 317, 410, 413, 424
molecular genomic makeup, 347
molecular testing, 143, 146, 375
monocytes, 264, 427
Monogenic Diabetes, maturity-onset diabetes, MODY, 327, 328, 331, 338, 339
monosomy, 8, 10, 22
mosaic, 8, 20, 23, 129, 173, 297
mosaicism, 8, 20, 23, 130, 173
motor disorder, 166
Muir-Torre Syndrome (See variants of Lynch Syndrome) multifactorial inheritance, 378, 380
multigenic, 167
Multiple Endocrine Neoplasia Type 1, MEN1, 327, 328
Multiple Endocrine Neoplasia Type 2, MEN2, 328, 364
multiple myeloma, 284, 356
multiple sclerosis (MS), 289, 303, 316, 317
muscular dystrophy, 222, 45, 242
mutation detection rate, 70
MUTYH-associated polyposis (MAP), 363, 386
mycobacterium tuberculosis, 195
myelodysplastic syndromes, 280
myelokathexis, 265, 285
myeloproliferative neoplasm (MPN), 262, 271, 276, 279, 283
myocardial infarction and survival, 112, 210, 214–215, 225, 226, 275
myoclonic epilepsy with ragged red fibers, 25
myotonic dystrophy, 13, 18, 31
National Association for Retarded Citizens, 142
NCLEX (National Council Licensure Examination), 414
NHGRI (National Human Genome Research Institute), 2–8, 12–14, 26, 28, 69, 94, 95, 159, 160, 211, 357, 391
National Institute of Nursing Research (NINR), 115, 410, 413, 428
National Newborn Screening and Genetics Resource Center, 142
National Research Council of the National Academy of Science (NAS/NRC), 142
National Society of Genetic Counselors (NSGC), 38, 59, 73
negative selection, 328
Neonatal alloimmune thrombocytopenia (NAIT), 270
neonatal respiratory distress syndrome (RDS), 195
NDI (Nephrogenic Diabetes Insipidus), 329
neural tube defect, 26, 126
neurodevelopmental disorder (NDD), 166, 172
neurofibromas, 20, 52, 154, 300
neurofibromatosis, 20, 56, 126, 153, 173, 289, 297, 299, 305, 315, 316, 364
Neurofibromatosis Type 1 (NF1), 297
Neurofibromatosis Type 2 (NF2), 297
neuropasticity, 165, 168
neuropsychiatric disorder, 167
neutropenia, 105–107, 264–266, 277, 279, 280, 393
neutrophil elastase (NE), 189, 191, 279
neutrophils, 190, 255, 264–266
newborn hearing screening, 306
newborn screening, 40, 70, 71, 77, 79, 133, 141–146, 193, 289, 291, 296, 411
Newborn Screening Quality Assurance Program (NSQAP), 143
next generation sequencing, 70, 71, 77, 80, 224, 225, 348, 389, 417, 418
next generation sequencing (NGS) and panel testing, 389–391
Niemann-Pick disease, 267
NHLBI (National Heart, Lung and Blood Institute Exome Sequencing Project), 240
nitrogenous base, 1
nociceptor modifications, 428
nondisjunction, 7–9, 352
non-Hodgkin lymphoma (NHL), 52, 285
nonmaleficence, 85, 87, 90, 412
nonsense mutation, 16, 17, 297
non-small cell lung cancer (NSCLC), 190, 200–202
nonstructural single gene disorders, 239, 244
Northern European Caucasian, 130, 190, 191, 193, 260
noxious stimuli, 426
nucleic acid (nDNA), 1, 2, 25, 181, 293
nuclear membrane, 4–6
numeracy, 74, 80
nurse administrators, 185
nurse researchers, 34, 61, 100, 116, 146, 409, 412, 413, 428
National Institute of Nursing Research (NINR), 115, 410, 413, 428
nursing research, 89, 115, 409, 410, 412, 413, 428
obesity, 331, 332, 333, 334, 335, 336, 337, 339(t)
obstructive sleep apnea (OSA), 262
occupational fumes, 189, 191
oncology pharmacogenomics, 103
online resources, 28, 182, 190, 337, 396, 417
opt-out, 144
optic gliomas, 298, 300
osteogenesis imperfecta, 305
Other Data Collection Resources, 372
Other Hereditary Colon Cancer Syndromes not associated with adenomatous, 383
p53 Tumor Suppressor gene, 350, 354–356, 359, 362, 364
pan cardio panel, 224, 225, 241
pancreatic exocrine insufficiency, 192
Parkinson disease, 26, 310
Index

p arm, 2
pachytene, 5, 6
pain, perception of, 426, 427
pain management, 425–428
pain phenotypes, 427
pain processing, 291, 427
pain sensitivity, 426, 428
pan ethnic, 130
pancytopenia, 267, 268, 277–279
paracentric inversion, 10
paroxysmal nocturnal hemoglobinuria, 271, 272, 276, 280
Patau syndrome (Trisomy 13), 153
paternal age, 126, 134, 136
paternal genes, 125, 133
paternal malnutrition, 125
paternal smoking, 126
pathologic chromosomal abnormalities, 159
penetrance, 19, 20, 31, 32, 37, 56–58, 69, 71, 72, 239, 274, 276, 295, 297, 301, 305, 367, 384, 385, 389
performance improvement, 413, 414
pericentric inversion, 10
peripartum depression (PPD), 134
peripheral inflammation, 427
personal history, 32, 41, 42, 44, 58, 61, 126, 276, 363, 364, 370, 374, 380, 389
personalized care, 33, 54, 62, 115, 345, 394, 428
personalized medicine, 99, 100, 113, 240, 391, 392, 412
Peutz Jeghers, 362, 363, 378, 386, 388
pharmacodynamics, 102, 103, 217
pharmacogenetics, 79, 100, 102, 110, 113–115, 2210, 217, 223, 229
pharmacogenomics and cancer, also refer to Chapter 5 (5-Fluorouracil; Irinotecan; Mercaptopurine), 103–108
pharmacokinetics, 101, 103
PHE, teratogenic effect, 292
phenotype and characteristics (Colon), 378–379
phenotype and characteristics (Extracolonic [e.g. endometrial; ovarian]), 379–380
phenotypic heterogeneity, 390, 425, 427
phenylalanine (PHE), 11, 133, 141, 192, 290, 291, 293
phenylalanine hydroxylase (PAH), 290, 291
phenylketonuria (PKU), 124, 125, 133, 135
Pick’s disease, 179
PIK3CA activating mutations, 203
PKU diet, 291, 292
placenta, 134
plasticity, 166, 295, 427
platelet closure time (PFA-100), 271
platelet disorders, 255, 268, 269, 271, 272
pluripotent stem (iPS) cells, 250, 255, 259
pneumonia, 191, 194, 301, 312
point mutation, 70, 128, 199, 282, 294, 295, 296, 304, 311, 352
point-of-care (POC), 141
Polio, 195
poly-A tail, 12
polycyclic aromatic hydrocarbons, 126, 200
POLYCYTHEMIA, 255, 261, 262, 275, 283
Polymerase chain reaction (PCR), 298
Polyposis syndromes, 378, 385
Pomalidomide, 259
population-based screening, 142
porphyrias, 264
positive predictive value, 76, 227
postpartum hemorrhage (PPH), 134
Post-transfusion purpura (PTP), 269
Potocki-Lupski syndrome, 167
Prader-Willi syndrome (PWS), 28, 125, 155, 161, 331, 339
precision care, 60, 360
precision medicine, 32, 34, 36, 99, 100, 103, 107, 109, 113, 348, 349, 425
Precision Medicine Initiative, 348
precocious puberty, 128, 158, 328
preconception care, 123–125, 135
preconceptional counseling, 124–126, 132–133
predictive biomarkers, 100
predictive testing, 72, 76, 77, 78, 179, 388
preeclampsia, 130, 131, 133, 134, 219
preimplantation genetic diagnosis (PGD), 131
premature aging, 180, 181
premature ovarian insufficiency, 128, 129
premutation, 25, 128, 294–296
premutation carriers, 128, 295
parenthood, 92, 124
prenatal screening, 71, 123, 135, 136, 258, 314
prenatal testing, 92, 136, 150, 299
presymptomatic testing, 33, 72, 141
primary ciliary dyskinesia (PCD), 194
primary familial and congenital polycythemia/erythrocytosis (PFPC/Erythrocytosis), 261
primary myelofibrosis, 284
primary prevention, 246, 376
primary screening test, 143
proband, 32, 33, 41, 44, 46, 48, 51, 54, 167, 204, 218, 248, 368, 376, 381, 387, 394–396
progeria, 180
pro-inflammatory cytokine, 144, 339, 424
prophase, 4–6
protease-3, 190
protein C, 270, 274–277
protein C deficiency, 275, 276
protein S deficiency, 275–277
proteinase inhibitor (Pi), 189
Proteome, 35
prothrombin gene mutation (PTM), 275
proto-oncogenes, oncogenes and carcinogenesis, 346, 352–354
pseudoautosomal regions, 22
PTEN mutations, 203
public expectations, 80
public health programs, 141
pulmonary cysts, 203–205
pulmonary surfactant, 195
purine, 1, 2, 108
pyrimidine, 1, 2, 104
Pyruvate Kinase Deficiency (PKD), 261
q arm, 3, 198, 328
radiation therapy, 278, 300, 424
random assortment, 6, 25
RAPID approach, 35, 36, 50, 58, 60–62, 149, 370, 375, 394
RAPID Approach and Cancer Genomics, 369–376
Utilization of RAPID for breast cancer, 394–395
rare chromosomal anomalies, 167
RBC osmotic fragility, 260
rearrangements, 68, 69, 201, 203, 281, 282, 352, 374, 391
recurrence risk, 19, 73, 392, 419
red blood cell, 108, 216, 255
religious background, 75
reproductive outcomes, 123
reproductive plan, 59, 125
residual dried blood spots, 144–146
Resources for Genetic/Genomic Neurological Disorders, 315–317
Resources for Counseling & Testing, 79
response to analgesics, 426
retinoblastoma, 20, 200, 350, 354, 356
retinoblastoma (RB1), 20, 200, 350, 354, 356
Rett syndrome, 23
rheumatoid arthritis, 153, 191, 331, 335
ribonucleic acid (RNA), 10, 215, 295, 358
ribosome, 13, 278
Risk Assessment and Cancer Genomics 369–376
Risk Assessment and Identifying individuals suspected for Lynch Syndrome, 380
risk communication, 31, 33, 35, 38, 60, 61, 87, 370, 375, 376, 396
Risk Communication/Counseling and Risk Management, 375–376
Risk Identification and Risk Elements, 372
risk management, 33–36, 60, 61, 78, 365, 370, 375, 376, 377, 390, 396
risk probability, 34, 35, 57, 58, 59, 62, 370–376
riboflavin, 12, 358
RNA polymerase, 12, 358
Robertsonian translocation, 9, 10
Rubinstein-Taybi syndrome, 155
sapropterin dihydrochloride, 293
schizophrenia, 27, 1270
Schwachman-Diamond syndrome (SDS), 277, 278
Schwannomas, 297–300, 364
Secondary Prevention and enhanced Surveillance, 377
second-tier test, 143
segregation analysis, 241
seizure disorder, 126
sense strand, 10–12, 15–18
sequenced, 144, 241, 418
sequential screening, 72
serum EPO, 261, 262
Severe Combined Immunodeficiency (SCID), 142, 143, 146
Severe congenital neutropenias (SCN), 279
severe recurrent ear infections, 194
sex chromosome aneuploidy, 130
sex cord tumors with annular tubules (SCTAT), 386
short interfering RNA (siRNA), 14
short stature, 125, 129, 151, 153, 155, 157–161, 198, 277, 279, 298, 305, 331
sickle cell anemia, 16, 48, 136, 143, 257, 259
sickle cell disease (SCD), 19, 21, 42, 54, 125, 132, 135, 142, 146, 256, 257, 413
sickle cell trait (SCT), 132, 257
Sigma Theta Tau, 413
signaling pathways, 203, 204, 352, 354, 356
simultaneous sequencing, 70
single nucleotide polymorphism (SNP), 27, 167, 211, 223, 332, 348, 391, 392
single-gene disorders, 127, 189, 223, 225, 327
situs inversus totalis, 194
small cell lung cancer (SCLC), 190, 200–202
smoking, 32, 43, 44, 100, 126, 134, 189, 191, 200, 202, 204, 210, 2, 218, 227, 262, 275, 307
SNP arrays, 223, 227, 229
social support, 73, 78, 80, 376
somatic mosaicism, 21
somatic mutation, 15, 20, 262, 280, 283, 351, 354, 362, 366
Sotos, 161, 162
Southern blot, 278, 286
sperm motility, 194
spermatogenesis, 126
spherocytosis, 260, 278
spina bifida, 26, 126
spinal muscular atrophy (SMA), 71
spindle fibers, 4, 6
splenectomy, 260, 267
splicing, 12, 13, 313
spontaneous de novo mutation, 167, 297, 298
spontaneous pneumothorax, 204, 364
sporadic cancer, 346, 351, 356, 362, 369
squamous cell cancer, 203
start codon, 10, 11, 13
State Boards of Nursing, 414
statistical trend data incidence and mortality, 346–347
stem cell theory, 349
Stickler syndrome, 153
stillbirth, 126, 129, 131, 132
stop codon, 10–18, 258
Storage Pool Deficiency (SPD), 272
strategic management, 413, 414
submetacentric, 3
substance abuse, 44, 127, 424
suicide, 61, 302
Summer Genetics Institute (SGI), 410
symptom management, 303, 412, 423, 428
synthetic elastase inhibition therapy, 191
Systemic mastocytosis (SM), 284
T helper 2− (Th2−), 197, 200
tachypnea, 194, 195
tall stature, 151, 157–159, 161, 162
Tamoxifen, 102, 374, 376, 393
targeted mutation analysis, 69, 70, 72
targeted physical examination, 52, 394, 411, 415
Tay Sachs, 21, 71, 131, 136
telomerase, 4
telomere, 4, 181, 278,
telophase, 4, 6
thalassemia, 21, 136, 143, 159, 255–258, 264
thiopurine methyltransferase (TPMT), 107
Thiopurines, 107, 393
third party payers, 414
three-generation pedigree, 31, 37, 46, 47, 55, 59, 61, 62, 123, 124, 204, 414
thrombocytopenia, 104, 268, 269–272, 274, 277–280
thrombocytopenia and absent radii (TAR), 268
thrombocytosis, 268, 271, 272, 283
thrombophilia, 275–277
thrombopoietin (TPO), 268
thrombotic thrombocytopenic purpura [TTP], 270
thymine, 2, 10, 12, 104
Timothy syndrome, 167
tobacco, 42, 124, 191, 196, 198, 199, 361
TP53, 199, 203, 282, 283, 389
training, 34, 73, 100, 143, 375, 377, 395, 410–414
transcriptomics, 209, 215, 222, 229, 250
transfer RNA (tRNA), 12, 13
transferrin saturation, 263
transgenerational epigenetics, 125
translocation, 8–10, 102, 131, 281, 282, 285, 331, 351–353, 391
Treacher-Collins syndrome, 153
triggers, 32, 185, 196, 198, 262, 336, 428
trinucleotide repeat, 31, 57, 128, 293, 294, 301
triplet, 10, 25, 128
Tri-Service Nursing Research Program, 413
trisomy, 8, 10, 136, 153, 155, 159, 161, 167, 173, 280
trisomy 21 (DS), 155, 159, 161, 167, 280
tuberculosis, 190, 195, 336
tuberous sclerosis, 20, 28, 126, 167
Tumor growth factor-beta (TGF-β), 192
tumor markers, 360, 391
tumor markers and breast cancer (Example of), 391–392
tumor markers and colon cancer (Example of), 392
tumor necrosis factor (TNF), 424
tumor suppressor, 199, 200, 204, 297, 298, 3283, 36, 345, 352, 353–359, 362–366, 397, 419
tumor suppressor genes, 352, 353–356
Turcot syndrome, 380, 386
Turkish, 133
Turner syndrome, 8, 127, 129, 155, 157, 160, 161, 167
twin studies, 195, 196, 210, 218, 426
Type 1 Diabetes Mellitus (T1DM), 330
Type 2 diabetes mellitus, 327, 331
Type II pneumocytes, 195
typical and atypical development, 166
UDP-glucuronosyltransferase 1A1 (UGT1A1) and UGTT1A1 genetic testing, 105, 106
uninformative result, 70, 72, 77, 78
uniparental disomy, 24, 331
uracil, 10, 12, 99, 101, 103, 104, 106, 116, 393
United States Food and Drug Administration (FDA), 72
U.S. Secretary of Health and Human Services (HHS) Advisory Committee on Heritable Disorders in Newborns and Children (SACHDNC), 142
Usher syndrome, 303, 305, 317
valproate, 126
valproic acid (VPA), 126, 127, 259
variable expression, 209, 295, 297
variant of unknown/uncertain significance, 33, 70
variants of Lynch Syndrome (Muir-Torre and Turcot), 380
vascular dementia, 111, 179
velocardiofacial syndrome (VCFS), 153
venous thrombosis, 40, 224, 226, 269, 275, 276
vertical transmission, 19, 33, 55, 56, 386
vestibulocochlear nerve (tumor), 298
virtue, 85–87, 90, 182
vitamin B12, 127, 268
Vitamin D deficiency, 157, 337
Vitamin D3, 309, 337
VKORC1 genotypes, 109, 110
von Hippel-Lindau (VHL), 57, 262, 365
von Recklinghausen disease, 153
von Willebrand disease (VWD), 134, 269–271
Warrdenburg syndrome, 265, 285
Web Based Genetic Institute, 410
Werner syndrome, 180
WHIM syndrome, 265
white blood cell, 255, 264, 265, 267
whole exome sequencing, 33, 36, 241, 417
wild type, 15–18, 106-112, 201, 281, 336, 366 , 392
Williams syndrome 155
Wiskott-Aldrich syndrome, 268, 272
Wolffian duct 130
Wound healing 152, 243, 266, 414
Whole genome sequencing, 33, 80, 87, 96, 115, 116, 241, 249, 389, 391, 414, 417
X chromosome, 2, 18, 19, 21, 22, 33, 56, 128-130, 136, 159, 161, 168, 198, 242, 261, 273, 274, 296
X-inactivation, 22
X-linked dominant, 19, 23
X-linked ichthyosis, 23
X-linked inheritance, 33
Y chromosome, 2, 19, 21, 22, 23, 126, 129
zonulin pathway, 335
zygotene, 5